首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
It is demonstrated that 50% substitution of vanadium for molybdenum in the pyrochlore lattice of the complex oxide Y2(V x Mo1 ? x )2O7 results in a transition from the spin-glass ground state (at x = 0) to the ferromagnetic state in Y2VMoO7 (a = 10.1645(2) Å, T C = 55 K). The Gd2V0.67Mo1.33O7 compound (a = 10.2862(3) Å) is a ferromagnet with T C (84 K) exceeding that of undoped Gd2MnO2O7.  相似文献   

2.
The lattice parameters of ceramic samples of (1 ? x)SrTiO3-xPbTiO3 solid solutions are measured at room temperature. It is found that the samples have cubic symmetry in the concentration range x = 0?0.3 and tetragonal symmetry for x > 0.3. The lattice parameter a is virtually independent of temperature for x < 0.8 and slightly decreases in the range x = 0.8?1.0, while the lattice parameter c increases with increasing x. The reduced cubic parameter varies nonlinearly and deviates from Vegard’s linear law as the concentration x increases.  相似文献   

3.
Manganese oxides of spinel structure, LiMn2O4, Li1-x Ni x Mn2O4 (0.25 ≤ x≤ 0.75), and NiMn2O4, were studied by EDS, XRD, SEM, magnetic (M-H, M-T), and XPS measurements. The samples were synthesized by an ultrasound-assisted sol-gel method. EDS analysis showed good agreement with the formulations of the oxides. XRD and Rietveld refinement of X-ray data indicate that all samples crystallize in the Fd3m space group characteristic of the cubic spinel structure. The a-cell parameter ranges from a = 8.2276 Å (x = 0) to a = 8.3980 Å (x = 1). SEM results showed particle agglomerates ranging in size from 2.3 μm (x = 0) down to 0.8 μm (x = 1). Hysteresis magnetization vs. applied field curves in the 5–300K range was recorded. ZFC-FC measurements indicate the presence of two magnetic paramagnetic-ferrimagnetic transitions. The experimental Curie constant was found to vary from 5 to 7.1 cm3 K mol?1 for the range of compositions studied (0 ≤ x ≤ 1). XPS studies of these oxides revealed the presence of Ni2+, Mn3+, and Mn4+. The experimental Ni/Mn atomic ratios obtained by XPS were in good agreement with the nominal values. A linear relationship of the average oxidation state of Mn with Ni content was observed. The oxide’s cation distributions as a function of Ni content from x = 0 ?Li+[Mn3+Mn4+]O4 to x = 1 \( {\mathrm{Ni}}_{0.35}^{2+}{\mathrm{Mn}}_{0.65}^{3+}\left[{\mathrm{Ni}}_{0.65}^{2+}\right.\left.{\mathrm{Mn}}_{1.35}^{3+}\right]{\mathrm{O}}_4 \) were proposed.  相似文献   

4.
Bi4Ti3O12 (BIT) nanoparticles with a narrow average particle size distribution in the range of 11–46 nm was synthesized via a metal-organic polymeric precursor process. The crystallite size and lattice parameter of BIT were determined by XRD analysis. At annealing temperatures >550 °C, the orthorhombic BIT compound with lattice parameters a = 5.4489 Å, b = 5.4147 Å, and c = 32.8362 Å was formed while at lower annealing temperatures orthorhombicity was absent. Reaction proceeded via the formation of an intermediate phase at 500 °C with a stoichiometry close to Bi2Ti2O7. The particle size and the agglomerates of the primary particles have been confirmed by FESEM and TEM. The decomposition of the polymeric gel was ascertained in order to evaluate the crystallization process from TG-DSC analysis. Raman spectroscopy was used to investigate the lattice dynamics in BIT nanoparticles. In addition, investigation of the dependence of the visible emission band around the blue–green color emission on annealing temperatures and grain sizes showed that the effect of grain size plays important roles, and that oxygen vacancies may act as the radiative centers responsible for the observed visible emission band.  相似文献   

5.
The Ru-Ru spin-singlet formation in La2 ? x L n x RuO5 (Ln = Pr, Nd, Sm, Gd, Dy) was investigated by measurements of the specific heat and magnetic susceptibility. After subtraction of the lattice contribution from the specific heat (C p ), similar excess entropy values were obtained for all compounds. These entropies can be explained by the formation of antiferromagnetic Ru-spin dimers at low temperatures and provide a lower estimate for the intradimer exchange strength. Pronounced changes in the transition temperatures and a broadening of the corresponding peak in C p were observed. These changes depend on the rare-earth element and are due to local structural changes and heterogeneities caused by the substitution. The magnetic susceptibilities can be described by the sum of a rare-earth paramagnetic moment and the susceptibility of the unsubstituted La2RuO5. Density functional theory (DFT) calculations were performed for various compounds to investigate the origin of the magnetic transition and the relationship between structural changes and the spin-dimerization temperature. The combination of the present results with previous structural investigations supports the model of a spin-pairing of the Ru moments which occurs as a reason of the structural phase transition in La2 ? x L n x RuO5.  相似文献   

6.
Superconductivity was achieved in Ti-doped iron-arsenide compound Sr4Cr0.8Ti1.2O6Fe2As2 (abbreviated as Cr-FeAs-42622). The X-ray diffraction measurement shows that this material has a layered structure with the space group of P4/nmm, and with the lattice constants a = b = 3.9003 Å and c = 15.8376 Å. Clear diamagnetic signals in ac susceptibility data and zero-resistance in resistivity data were detected at about 6 K, confirming the occurrence of bulk superconductivity. Meanwhile we observed a superconducting transition in the resistive data with the onset transition temperature at 29.2 K, which may be induced by the nonuniform distribution of the Cr/Ti content in the FeAs-42622 phase.  相似文献   

7.
Single crystals of the K3H(SO4)2 compound are investigated using X-ray diffraction on Xcalibur S and Bruker diffractometers. The structure of the low-temperature monoclinic phase is refined (space group C2/c, z = 4, a = 14.698(1) Å, b = 5.683(1) Å, c = 9.783(1) Å, β = 103.01(1)°, T = 293 K, Bruker diffractometer), the structural phase transition is revealed, and the structure of the high-temperature trigonal phase is determined (space group R \(\bar 3\) m, z = 3, a = 5.73(1) Å,c = 21.51(1) Å,T = 458 K, Xcalibur diffractometer).  相似文献   

8.
Lead-free Na0.5Bi0.5TiO3 (NBT) and (1 ? x)Na0.5Bi0.5TiO3 + xBaTiO3 with x = 0.1 and 0.2 (where x = 0.1 and 0.2 are named as NBT1 and NBT2, respectively), (1 ? y)Na0.5Bi0.5TiO3 + yBa0.925Nd0.05TiO3 with y = 0.1 and 0.2 (where y = 0.1 and 0.2 are named as NBT3 and NBT4, respectively)-based relaxor ferroelectric ceramics were prepared using the sol-gel method. The crystal structure was investigated by X-ray diffraction (XRD) at room temperature (RT). The XRD patterns confirmed the presence of the rhombohedral phase in all the samples. The electrical properties of the present NBT-based samples were investigated by complex impedance and the modulus spectroscopy technique in the temperature range of RT–600 °C. The AC conductivity was found to increase with the substitution of Ba2+ ions to the NBT sample whereas it significantly decreased with the addition of Nd3+ ions. The more anion vacancies in Ba-added samples and the lower anion vacancies in Nd-added samples were found to be responsible for higher and lower conductivities, respectively.  相似文献   

9.
SrDy x Fe12?x O19 (x ≤ 0.08) nanofibers have been synthesized by the electrospinning method followed by calcinations process. The partial substitution of rare earth ions Dy3+ (10.5 μ B of magnetic moments) mainly occupying 12k sublattice sites in the SrFe12O19 crystal structure is investigated and discussed in this work. An enhanced coercivity of 7155 Oe has been obtained when the doped content reached to 0.08 at a relative low calcination temperature of 800 °C. As a result, we believe the synthesized SrDy x Fe12?x O19 nanofibers can potentially be useful in high-density recording media as well as permanent magnets.  相似文献   

10.
Tm x Cu3V4O12, a perovskite-like oxide (space group, Im-3; Z = 2; a = 7.279–7.293 Å) containing vacancies in its cationic sublattice, was obtained barothermally (P = 7.0–9.0 GPa, t = 1000–1100°C) for the first time. The temperature dependences on the electrical resistivity (10–300 K) and the magnetic susceptibility (0–300 K) were investigated. It was shown that the oxide Tm x Cu3V4O12 is characterized by metal-type conductivity and paramagnetic properties.  相似文献   

11.
The temperature-dependent field cooling (FC) and zero-field cooling (ZFC) magnetizations, i.e., M FC and M ZFC, measured under different magnetic fields from 500 Oe to 20 kOe have been investigated on two exchange–spring CoFe2O4/CoFe2 composites with different relative content of CoFe2. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at a field-dependent irreversible temperature T irr. For the sample with less CoFe2, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad peak at an intermediate temperature T 2 below T irr , and the moments are suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the ?d(M FC ? M ZFC)/dT curves of the sample with more CoFe2, besides a broad peat at an intermediate temperature T 2, a rapid rise around the low temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
Graphical abstract CoFe2O4/CoFe2 composites with different relative content of CoFe2 were prepared by reducing CoFe2O4 in H2 for 4 h (S4H) and 8 h (S8H). The temperature-dependent FC and ZFC magnetizations, i.e., M FC and M ZFC, under different magnetic fields from 500 Oe to 20 kOe have been investigated. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at field-dependent irreversible temperature T irr. For the S4H sample, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad and field-dependent relaxing peak at T 2 below T irr (figure a), and the moments were suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the S8H sample, it exhibits the reentrant spin-glass state around 50 K, as evidenced by a peak in the M FC curve (inset in figure b) and as a result of the cooperative effects of the random anisotropy of CoFe2O4, exchange–spring occurring at the interface of CoFe2O4 and CoFe2 together with the inter-particle dipolar interaction (figure c); in ?d(M FC ? M ZFC)/dT curves, besides a broad relaxing peat at T 2, a rapid rise around the low-temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
  相似文献   

12.
The spectra of lattice vibration frequencies of solid solutions Ba1 ? x Bi2x/3? x/3Ti(Zr)O3 and Ba1 ? x La x Ti(Zr)1 ? x/4? x/4O3 are calculated in terms of a generalized Gordon-Kim model with inclusion of the dipole and quadrupole polarizabilities. Over the entire concentration range, the calculated phonon spectra contain a ferroelectric soft mode. The effect of various interactions on the ferroelectric instability of these solid solutions is studied. It is shown that the character of ferroelectric instability is largely determined by the mechanism of charge compensation.  相似文献   

13.
The structural geometry change in the perovskite-type N(CH3)4CdBr3 single crystal near the phase transition temperature of T C = 390 K was investigated using magic angle spinning nuclear magnetic resonance techniques. For 1H and 13C nuclei, the temperature dependences of their chemical shift, spectral intensity, and spin–lattice relaxation time (T ) in the rotating frame were obtained and analyzed. While the chemical shift and T of 1H showed change near T C, those of 13C did not. In addition, the 113Cd spin–lattice relaxation time T 1 in the laboratory frame near T C show no evidence of anomalous change near the phase transition temperature, which coincides with the measured changes in the 1H T . The driving force for this phase transition was connected to the 1H in the CH3 groups.  相似文献   

14.
The present paper reports the synthesis, crystal structure, 13C and 111Cd cross-polarization magic-angle spinning nuclear magnetic resonance(CP-MAS-NMR) analysis and ac conductivity for a new organic–inorganic hybrid salt, [C7H12N2][CdCl4]. The compound crystallizes in the triclinic system, space group P\( \overline 1 \), with unit cell dimensions: a?=?7.1050(3) Å, b?=?8.9579(3) Å, c?=?9.4482(3) Å, α?=?81.415(1)°, β?=?89.710(2)°, γ?=?85.765(1)°, V?=?592.97(4) Å3, and Z?=?2. The asymmetric unit is composed of one-2,4-diammonium toluene cation and one [CdCl4]2? anion. The Cd atom is in a slightly distorted octahedra coordination environment. Its structure can be described by infinite chains of CdCl6 octahedron linked to organic cations by a strong charge-assisted N–H???Cl interactions in order to build organic–inorganic layers staked along \( \left[ {0\overline 1 1} \right] \) direction. The solid state 13C CP-MAS-NMR spectra has shown seven isotropic resonances, confirming the existence of seven non-equivalent carbon atoms, which is consistent with crystal structure determined by X-ray diffraction. As for 111Cd MAS-NMR, it has shown one cadmium site with isotropic chemical shift observed at 167.2 ppm. The complex impedance of the compound has been investigated in the temperature range of 403–460 K and in the frequency range of 200 Hz–5 MHz. The impedance plots have shown semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements.  相似文献   

15.
40-to 120-nm-thick (001)La0.67Ca0.33MnO3 films grown through laser evaporation on (001)NdGaO3 were studied. The lattice parameters of the La0.67Ca0.33MnO3 films measured in the substrate plane (a=3.851 Å) and along the normal to its surface (a=3.850 Å) practically coincided with that of the pseudocubic neodymium gallate. The unit-cell volume of the La0.67Ca0.33MnO3 film was slightly smaller than that of stoichiometric bulk samples. The position of the maximum in the temperature dependence of electrical resistivity did not depend on the thickness of the La0.67Ca0.33MnO3 film. The negative magnetoresistance (MR≈?0.25, H=0.4 T) of La0.67Ca0.33MnO3 films reached a maximum at 239–244 K.  相似文献   

16.
Nonstoichiometric Bi2WO6 photocatalyst with the composition of Bi2?+?x WO6?+?1.5x (?0.25 ≤ x ≤ 1) wa synthesized by a facile solid state reaction method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis absorption spectrum. The Bi2.5WO6.75 photocatalyst showed excellent visible-light-driven photocatalytic performance; nearly 100 % of RhB (10 ppm, pH?=?3?~?4) was decomposed within 25 min, which demonstrated that nonstoichiometric semiconductors could be an efficient visible-light-driven photocatalyst.  相似文献   

17.
A comparative analysis of the results of the X-ray and Mösbauer studies of the high-temperature superconductor (HTSC) YBa2Cu3O y and YBa2Cu3 ? x 57Fe x O y (x = 0.015, T c ≈ 91.5 K) samples with different average grain sizes <D> in the micron and submicron ranges has been performed. The regularities in the change in the lattice parameter c and in the degree of occupation of different oxygen sites in the CuOδ chain planes taking place at the decrease in <D> have been studied. The quantitative interrelation between the parameter c and the oxygen content δ in the CuOδ planes exceeding the amount of the mobile oxygen due to the interplane oxygen redistribution is established.  相似文献   

18.
Tungsten (W)-doped SnO2 is investigated by first-principle calculations, with a view to understand the effect of doping on the lattice structure, thermal stability, conductivity, and optical transparency. Due to the slight difference in ionic radius as well as high thermal and chemical compatibility between the native element and the heterogeneous dopant, the doped system changes a little with different deviations in the lattice constant from Vegard’s law, and good thermal stability is observed as the doping level reaches x = 0.125 in Sn1-x W x O2 compounds. Nevertheless, the large disparities in electron configuration and electronegativity between W and Sn atoms will dramatically modify the electronic structure and charge distribution of W-doped SnO2, leading to a remarkable enhancement of conductivity, electron excitation in the low energy region, and the consequent optical properties, while the visible transparency of Sn1-x W x O2 is still preserved. Particularly, it is found that the optimal photoelectric properties of W-doped SnO2 may be achieved at x = 0.03. These observations are consistent with the experimental results available on the structural, thermal, electronic, and optical properties of Sn1-x W x O2, thus presenting a practical way of tailoring the physical behaviors of SnO2 through the doping technique.  相似文献   

19.
We apply Raman scattering spectroscopy to study the nature of carbon inclusions in Al2O3 and (HfO2) x (Al2O3)1 ? x films deposited using volatile complex compounds. Raman spectra of the films under investigation contain D and G vibrational modes, which indicate that carbon clusters of the sp 2 configuration tend to form in the films. We estimate the size of clusters from the integrated intensity ratio I D /I G and find it to be in the range of 14–20 Å. The content of hydrogen in carbon clusters is calculated from the height of the photoluminescence pedestal and is found to vary from 14 to 30 at % depending on the regime of the film’s synthesis.  相似文献   

20.
The crystal structure and magnetic properties of the Bi1 ? x Ca x Fe1 ? x/2Nb x/2O3 system were studied. It is shown that, at x ≤ 0.15, the unit-cell symmetry of solid solutions is rhombohedral (space group R3c). Solid solutions with x ≥ 0.3 have an orthorhombic unit cell (space group Pbnm). The rhombohedral compositions are antiferromagnetic, while the orthorhombic compositions exhibit a small spontaneous magnetization due to Dzyaloshinski?-Moriya interaction. In CaFe0.5Nb0.5O3, the Fe3+ and Nb5+ ions are partially ordered and the unit cell is monoclinic (space group P21/n). In the concentration range 0.15 < x < 0.30, a two-phase state (R3c + Pbnm) is revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号