首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Two anion receptors, 1 and 2, based on the calix[6]crown-4 architecture were synthesized and characterized by NMR (1H, 13C, COSY), UV-vis, and MALDI-MS. 1H NMR measurements demonstrate that receptors 1 and 2 exhibit the highest binding affinity for fluoride ions compared to other anions including Cl-, Br-, NO3-, HSO4-, H2PO4-, and AcO-. The binding constants of 1 with F- and AcO- are 326 (+/-32) and 238 (+/-23) M-1, whereas those of 2 with F- and AcO- are 222 (+/-25) and 176 (+/-21) M-1. The fluorescent titration of 2 with various anions such as Cl-, Br-, NO3-, HSO4-, and H2PO4- led to essentially no change in excimer emission and a slight enhancement of monomer emission. In contrast, a dramatic change was observed in the fluorescence spectra upon the addition of F- and AcO- to 2. Self-assembled monolayers (SAMs) of 1 were formed on gold surfaces and characterized by reductive desorption and other techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy were used to monitor anion recognition by the SAM-modified gold electrodes. The gold electrodes modified by SAMs of 1, upon binding with the F- anion, exhibit a dramatic increase in charge-transfer resistance (Rct) values. This is due to the repulsion between the negatively charged electrode surfaces and the negatively charged Fe(CN)6(3-/4-) redox probe in the electrolyte solution. In contrast, smaller increases in Rct values were observed in the cases of other monovalent anions investigated.  相似文献   

2.
A tetraazamacrocycle containing ferrocene moieties has been synthesized and characterized. The tetraprotonated form of this compound was evaluated as a receptor (R) for anion recognition of several substrates (S), Cl(-), PF(6)(-), HSO(4)(-), H(2)PO(4)(-) and carboxylates, such as p-nitrobenzoate (p-nbz(-)), phthalate (ph(2-)), isophthalate (iph(2-)) and dipicolinate (dipic(2-)). (1)H NMR titrations in CD(3)OD indicated that this receptor is not suitable for recognizing HSO(4)(-) and H(2)PO(4)(-), but weakly binds p-nbz(-), and strongly interacts with ph(2-), dipic(2-), and iph(2-) anions forming 1 : 2 assembled species. The largest beta(2) binding constant was determined for ph(2-), followed by dipic(2-) and finally iph(2-). The effect of the anionic substrates on the electron-transfer process of the ferrocene units of R was evaluated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in methanol solution and 0.1 mol dm(-3)(CH(3))(4)NCl as the supporting electrolyte. Titrations of the receptor were undertaken by addition of anion solutions in their tetrabutylammonium or tetramethylammonium forms. The protonated ligand exhibits a reversible voltammogram, which shifts cathodically in the presence of the substrates. The data revealed kinetic constraints in the formation of the receptor/substrate entity for dipic(2-), ph(2-) and iph(2-) anions, but not for p-nbz(-). In spite of the slow kinetics of assembled species formation with the ph(2-) substrate, this anion provides the largest redox-response when the supramolecular entity is formed, followed by dipic(2-), iph(2-) and finally p-nbz(-) anions. This trend is in agreement with the (1)H NMR results and the values of the binding constants. Single crystal X-ray structures of the receptor with PF(6)(-), ph(2-), iph(2-) and p-nbz(-) were carried out and showed that supermolecules with a RS(2) stoichiometry are formed with the first three anions, but RS(4) with p-nbz(-). In all cases the binding occurs outside the macrocyclic cavity via N-H...O=C hydrogen bonds for carboxylate anions and N-H...F hydrogen bonds for the PF(6)(-) anion, which is in agreement with the solution results. The macrocyclic framework adopts different conformations in order to interact with each substrate having Fe...Fe intramolecular distances ranging from 10.125(14) to 12.783(15)A.  相似文献   

3.
Anion binding has been achieved with a resorcinarene substituted with four 2,2'-dipicolylamine moieties on the upper rim. The four dipicolylamine groups reside in proximity on one rim of the cavitand. The dipicolylamine groups were protonated with triflic acid to provide the cationic ammonium sites for anion binding. This anion receptor binds strongly to anions of different geometries, such as H(2)PO(4)(-), Cl(-), F(-), CH(3)CO(2)(-), HSO(4)(-), and NO(3)(-). The association constants for binding these anions are large, on the order of log K = 5 in CD(3)CN, a solvent of intermediate dielectric constant. These values represent significant binding compared to other cavitands with nitrogen pendant groups. Evidence suggests that the cavitand provides two identical receptor sites formed by two dipicolylamine groups, facilitating the simultaneous binding of two anions. Intramolecular binding of anions between two protonated dipicolylamine groups is indicated on the basis of the comparison to a structurally similar monomeric analogue and by semiempirical PM3 molecular modeling. Titrations with the analogue result in much weaker anion association, even at high concentrations, indicating the importance of proximity and preorganization of sites on the cavitand upper rim.  相似文献   

4.
A novel acetate selective anion sensor 3 based on azophenol and mercapto thiadiazole had been designed and synthesized. Sensor 3 behaves a single selectivity and sensitivity in the recognition for AcO(-) anion over other anions such as F(-), Cl(-), Br(-), I(-), H(2)PO(4)(-), HSO(4)(-) and ClO(4)(-) by naked-eyes and UV-vis spectra changes in aqueous solution (H(2)O/DMSO, 5:5, v/v). The color of the solution containing sensor 3 had an obvious change from colorless to orange only after the addition of AcO(-) in aqueous solution while other anions did not cause obvious color change. (1)H NMR titration results revealed that the binding process includes two steps: (i) hydrogen bonding interactions (for small quantities of acetate) and (ii) proton transfer between the sensor 3 and the coordinated anion (for high quantities of acetate). The association constant K(a) was 7.35×10(3) M(-1). The detection limitation of AcO(-) with the sensor 3 was 1.0×10(-6) mol L(-1).  相似文献   

5.
An effective anion sensor, [Ru(II)(bpy)(2)(H(2)L(-))](+) (1(+)), based on a redox and photoactive {Ru(II)(bpy)(2)} moiety and a new ligand (H(3)L = 5-(1H-benzo[d]imidazol-2-yl)-1H-imidazole-4-carboxylic acid), has been developed for selective recognition of fluoride (F(-)) and acetate (OAc(-)) ions. Crystal structures of the free ligand, H(3)L and [1](ClO(4)) reveal the existence of strong intramolecular and intermolecular hydrogen bonding interactions. The structure of [1](ClO(4)) shows that the benzimidazole N-H of H(2)L(-) is hydrogen bonded with the pendant carboxylate oxygen while the imidazole N-H remains free for possible hydrogen bonding interaction with the anions. The potential anion sensing features of 1(+) have been studied by different experimental and theoretical (DFT) investigations using a wide variety of anions, such as F(-), Cl(-), Br(-), I(-), HSO(4)(-), H(2)PO(4)(-), OAc(-) and SCN(-). Cyclic voltammetry and differential pulse voltammetry established that 1(+) is an excellent electrochemical sensor for the selective recognition of F(-) and OAc(-) anions. 1(+) is also found to be a selective colorimetric sensor for F(-) or OAc(-) anions where the MLCT band of the receptor at 498 nm is red shifted to 538 nm in the presence of one equivalent of F(-) or OAc(-) with a distinct change in colour from reddish-orange to pink. The binding constant between 1(+) and F(-) or OAc(-) has been determined to be logK = 7.61 or 7.88, respectively, based on spectrophotometric titration in CH(3)CN. The quenching of the emission band of 1(+) at 716 nm (λ(ex) = 440 nm, Φ = 0.01 at 298 K in CH(3)CN) in the presence of one equivalent of F(-) or OAc(-), as well as two distinct lifetimes of the quenched and unquenched forms of the receptor 1(+), makes it also a suitable fluorescence-based sensor. All the above experiments, in combination with (1)H NMR, suggest the formation of a 1:1 adduct between the receptor (1(+)) and the anion (F(-) or OAc(-)). The formation of 1:1 adduct {[1(+)·F(-)] or [1(+)·OAc(-)]} has been further evidenced by in situ ESI-MS(+) in CH(3)CN. Though the receptor, 1(+), is comprised of two N-H protons associated with the coordinated H(2)L(-) ligand, only the free imidazole N-H proton participates in the hydrogen bonding interactions with the incoming anions, while the intramolecularly hydrogen bonded benzimidazole N-H proton remains intact as evidenced by the crystal structure of the final product (1). The hydrogen bond mediated anion sensing mechanism, over the direct deprotonation pathway, in 1(+) has been further justified by a DFT study and subsequent NBO analysis.  相似文献   

6.
Newly synthesised fluorescent chemosensor ADDTU contains the thiourea receptor connected to the acridinedione (ADD) fluorophore via a covalent bond, giving rise to a fluorophore-receptor motif. In this fluorescent chemosensor, the anion recognition takes place at the receptor site which result in the concomitant changes in the photophysical properties of a ADD fluorophore by modulation of photoinduced electron transfer (PET) process. The binding ability of these sensor with the anions F(-), Cl(-), Br(-), I(-), HSO(4)(-), ClO(4)(-), AcO(-), H(2)PO(4)(-) and BF(4)(-) (as their tetrabutylammounium salts) in acetonitrile were investigated using UV-vis, steady state and time-resolved emission techniques. ADDTU system allows for the selective fluorescent sensing of AcO(-), H(2)PO(4)(-) and F(-) over other anions in acetonitrile.  相似文献   

7.
Q Li  Y Guo  S Shao 《The Analyst》2012,137(19):4497-4501
A new fluorescent receptor for anions has been synthesized by the combination of BODIPY dye and indole moiety. The binding and sensing abilities of receptor toward various anions have been studied by absorption, emission and (1)H NMR titrations spectroscopies. Receptor could act as a highly selective "Off-On" fluorescent sensor for hydrogen sulfate anion in CH(3)CN solvent and CH(3)CN-H(2)O medium. The fluorescence response of receptor toward HSO(4)(-) in CH(3)CN solvent could be due to the suppressed PET (photo-induced electron transfer) process induced by the multiple hydrogen bonding interactions between receptor and HSO(4)(-). In CH(3)CN-H(2)O medium, the HSO(4)(-)-induced change is mainly the consequence of a simple protonation of the CH[double bond, length as m-dash]N- moiety of receptor , which inhibited the PET process and "turned on" the fluorescence of .  相似文献   

8.
Tris-hydrazone (1) functioned as a colorimetric chemosensor for a variety of anions such as F(-), AcO(-) and H(2)PO(4)(-). The anion binding could be easily detected by naked-eye according to color changes. The high binding ability of the receptor 1 to anions was further investigated by UV-vis absorption spectroscopy in DMSO. The results of job plot of the receptor 1 with different anions demonstrated that the stoichiometry of the complex between 1 and F(-) was 1:1 (1:anion) and the stoichiometry of the other complexes studied was 1:3 (1:anion).  相似文献   

9.
A new anion sensor [Ru(bpy)(2)(DMBbimH(2))](PF(6))(2) (3) (bpy is 2, 2'-bipyridine and DMBbimH(2) is 7,7'-dimethyl-2,2'-bibenzimidazole) has been developed. Its photophysical, electrochemical and anion sensing properties are compared with two previously investigated systems, [Ru(bpy)(2)(BiimH(2))](PF(6))(2) (1) and [Ru(bpy)(2)(BbimH(2))](PF(6))(2) (2) (BiimH(2) is 2,2'-biimidazole and BbimH(2) is 2,2'-bibenzimidazole). The high acidity of the N-H fragments in these complexes make them easy to be deprotonated by strong basic anions such as F(-) and OAc(-), and they form N-H···X hydrogen bonds with weak basic anions like Cl(-), Br(-), I(-), NO(3)(-), and HSO(4)(-). Complex 3 displays strong hydrogen bonding with these 5 weak basic anions, with binding constants between 17,000 and 21,000, which are larger than those observed in complex 1, with binding constants between 3300 and 5700, and in complex 2, which shows no hydrogen bonding toward Cl(-), Br(-), I(-), and NO(3)(-), and forms considerable hydrogen bonds with HSO(4)(-) with a binding constant of 11,209. These hydrogen bonding behaviours give different NMR, emission and electrochemical responses. The different anion binding affinity of these complexes may be mainly attributed to their different pK(a1) values, 7.2 for 1, 5.7 for 2, and 6.2 for 3. The additional methyl groups at the 7 and 7' positions of complex 3 may also play an important role in the enhancement of anion binding strength.  相似文献   

10.
The synthesis of four fluorescent photoinduced electron transfer (PET) chemosensors 1-4 for anions is described. These are all based on a simple design employing charge neutral aliphatic or aromatic thiourea anion receptors connected to an anthracene fluorophore via a methylene spacer. Here the anion recognition occurred through 1 : 1 hydrogen bonding between the thiourea protons and the anion, as demonstrated by observing the changes in the (1)H NMR in DMSO-d(6) where the two thiourea protons were shifted downfield upon addition of anions. Whereas 1-3 were designed for the detection of anions such as fluoride, acetate or phosphate, 4 was made for the recognition of N-protected amino acids. All the sensors showed 'ideal' behaviour where only the fluorescence emission was quenched upon anion recognition, due to enhanced efficiency of electron transfer quenching from the receptor to the excited state of the fluorophore. By simply varying the nature of the thiourea substituent it was possible to modulate, or tune, the acidity of the thiourea receptor moiety, altering the sensitivity of the anion recognition. For, the anion selectivity and the degree of the fluorescence quenching were in the order of F(-) > AcO(-) > H(2)PO(4)(-), with Cl(-) or Br(-) not being detected.  相似文献   

11.
Spectrophotometric and 1H NMR titrations of N-methoxyethyl-N'-(4-nitrophenyl)thiourea (3) by Bu(4-)NOAc show that in DMSO deprotonation of the receptor and formation of a hydrogen-bonded complex with anion proceed simultaneously but in MeCN deprotonation requires the participation of the second acetate anion. The formation constants of hydrogen-bonded complexes were determined from titrations in the presence of added acetic acid, which suppressed deprotonation. These constants together with independently measured stability constants of (AcO)(2)H(-) complexes were employed for a rigorous numerical analysis of titration results in the absence of added acid, which allowed us to determine the equilibrium deprotonation constants as well as pKa values for 3 in both solvents. Although 3 appeared to be a weaker acid than AcOH in both solvents, it can be deprotonated by acetate in dilute solutions when the concentration of liberated acetic acid is low enough. With disubstituted N,N-bis(methoxyethyl)-N'-(4-nitrophenyl)thiourea 4 only deprotonation equilibrium is observed. In contrast, both parent urea derivatives 1 and 2 cannot be deprotonated by acetate anions. Independent of the real type of equilibrium, whether it is a deprotonation or a hydrogen bonding, titration plots always can be satisfactorily fitted to a formal 1:1 binding isotherm. A relationship between apparent "binding constants" and real equilibrium constants of hydrogen bonding association and deprotonation processes is discussed.  相似文献   

12.
The X-ray crystal structure of a mixed-ligand bimetallic ruthenium(II) complex of composition [(bipy)(2)Ru(H(2)Impib)Ru(bipy)(2)](ClO(4))(4) (1), where H(2)Impib = 1,3-di(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)benzene and bipy = 2,2'-bipyridine, has been determined and showed that the compound crystallized in monoclinic form with the space group P2(1)/c. The absorption, steady state and time-resolved luminescence spectral properties of the complex were thoroughly investigated in different solvents. The compound displays strong luminescence at room temperature with lifetimes in the range of 140-470 ns, depending upon the nature of the solvent. Solvent-induced lifetime tuning makes the complex a suitable solvatochromic probe. The complex is found to undergo one simultaneous two-electron reversible oxidation in the positive potential window (0 to +1.6 V) and four quasi-reversible reductions in the negative potential window (0 to -2.2 V). Spectroelectrochemical studies have also been carried out for the bimetallic compound in the range of 300-1600 nm. With stepwise oxidation of the Ru(ii) centers replacement of MLCT bands by LMCT bands occur with the development of a broad band at λ(max) = 1260 nm, which is ascribed to inter-valence charge-transfer (IVCT) transition for the mixed-valence Ru(II)Ru(III) species. The anion sensing properties of the receptor were thoroughly investigated in acetonitrile solution using absorption, steady state and time-resolved emission spectroscopic studies. The anion sensing studies revealed that the receptor acts as sensor for F(-), AcO(-) and H(2)PO(4)(-). It is evident that in the presence of excess F(-) and AcO(-) ions, deprotonation of the imidazole N-H fragments of the receptor occurs, an event which is signaled by the change of color from yellow to orange visible to the naked eye. From the absorption and emission titration studies the binding/equilibrium constants of the receptor with the anions have also been determined. Anion-induced lifetime quenching by F(-) and AcO(-) and enhancement by H(2)PO(4)(-) makes the receptor a suitable lifetime-based sensor for selective anions. Cyclic voltammetry (CV) measurements of the compound carried out in acetonitrile have provided evidence in favor of anion-dependent electrochemical responses with F(-) and AcO(-) ions.  相似文献   

13.
A new series of indolocarbazole-quinoxalines (ICQ, receptors 6 and 7) are prepared and characterized for effective fluoride and acetate anion sensing. The new indole-based system has a highly flat rigid structure with a large pi system, and exhibits high binding affinity and sensitivity for acetate and fluoride anions. Receptors 6 and 7 give abundant and unique spectral features in dimethyl sulfoxide (DMSO). Both fluoride and acetate anions cause a bathochromic shift of the absorption peaks of receptor 7 in DMSO, whereas only fluoride anion results in a remarkable shift of the absorption peak of receptor 6 in DMSO. Receptors 6 and 7 can also operate as efficient colorimetric sensors for naked-eye detection of fluoride and acetate anions, and their combined use also offers a simple way for distinguishing these two anions by the naked-eye. The analysis of a Job's plot for the binding of receptor 7 and F(-), single crystal structures of 7.TBACl and 7.TBACH(3)COO confirm 1:1 binding stoichiometry. Notably, the ICQ system offers novel and excellent receptors for acetate anion both in solution and in crystalline solid through the formation of two hydrogen bonds.  相似文献   

14.
A series of structurally novel anion receptors , , and in which a ferrocene unit and a fluorescent moiety are linked to two imidazolium rings have been designed and prepared from 1,1'-bis(imidazolylmethyl)ferrocene. Their crystal structures revealed that these receptors are capable of incorporating anions such as PF(6)(-) and Br(-). Consequently, the anion binding studies were carried out using various techniques including electrochemistry (CV and OSWV), fluorescence, UV-vis, and (1)H NMR spectroscopy. All the receptors showed a special electrochemical response to the F(-) anion with a remarkable cathodic shift of more than 260 mV and displayed a unique selectivity for F(-) and AcO(-) anions with fluorescence enhancement over various other anions of present interest (Cl(-), Br(-), I(-), HSO(4)(-), H(2)PO(4)(-)). In addition, for receptor , obvious absorption changes were observed when the H(2)PO(4)(-) anion was added while other anions (F(-), Cl(-), Br(-), I(-), AcO(-), HSO(4)(-)) showed only a minor influence on the UV-vis spectra. (1)H NMR titrations demonstrated that receptors and can bind anions through (C-H)(+)X(-) hydrogen bonds and showed strong affinity and high selectivity for the AcO(-) anion in acetonitrile.  相似文献   

15.
Self-assembled monolayers (SAMs) on gold surfaces based on three kinds of acetylthio-surfactant-encapsulated polyoxometalate clusters (thio-SECs) terminated with multiple CH(3)COS- groups, (NC(26)H(55)S(CO)CH(3))(6)H(2)[Co(H(2)O)CoW(11)O(39)], (NC(26)H(55)S(CO)CH(3))(13)H(3)[Co(4)(H(2)O)(2)(P(2)W(15)O(56))(2)], and (NC(26)H(55)S(CO)CH(3))(13)[Fe(4)(H(2)O)(2)(P(2)W(15)O(56))(2)]Br, have been prepared, which is representative of a general methodology to fabricate polyoxometalate-based SAMs. Thio-SECs self-assembled into monolayers on gold surfaces through the hydrolysis of CH(3)COS- groups and the subsequent formation of S-Au bonds, which was confirmed by grazing angle infrared spectroscopy, X-ray photoelectron spectroscopy, and ellipsometric and scanning tunneling microscopy (STM) measurements. Furthermore, the SAMs of the thio-SECs possess closely packed structures, and the local short-range order is clearly observed in the magnified STM image. We have also investigated the electrochemical behavior of SAMs of thio-SECs by cyclic voltammetry in detail, and the redox potential of the original polyoxometalates has been well retained. The electrochemical signals of the SAMs are very weak because of the small moiety of thio-SECs that are electrochemically accessible in the cyclic voltammetry experiments. The polyoxometalate-modified electrodes that we prepared are not only highly ordered in the local short range but also stable in electrochemical cycling because of the multiple S-Au bonds of thio-SECs on the gold substrates that aid in the construction of functional materials such as electrochemical and electrocatalytic devices.  相似文献   

16.
A novel colorimetric sensor based on 8-hydroxy quinoline-5-azo-4'-nitrobenzene (1) was prepared and used for recognizing anions. 1 and its metal complex (1.Co) were found to show response to anions such as CH(3)CO(2)(-), H(2)PO(4)(-), HSO(4)(-), F(-) and dramatic color changes were observed. The selectivity and sensitivity of 1 and 1.Co for sensing anions were different, which was in the order of CH(3)CO(2)(-)>F(-)>H(2)PO(4)(-)>HSO(4)(-) for 1 and H(2)PO(4)(-)>HSO(4)(-)>CH(3)CO(2)(-) approximately F(-) for 1.Co, respectively. In CH(3)CN, sensor 1.Co exhibited excellent specificity toward H(2)PO(4)(-), and the color variety was dependent on the concentration of H(2)PO(4)(-) which was attributed to anion structure and stability of anionic complex (1-anion), metal complex (1-Co) and inorganic complex (Co-anion).  相似文献   

17.
Two new tetranuclear cationic metalla-bowls 4 and 5 were self-assembled from a bis-pyridine amide ligand (H(2)L) (1) and arene-ruthenium acceptors, [(Ru(2)(μ-η(4)-C(2)O(4))(η(6)-p-cymene)(2)](O(3)SCF(3))(2) (2) and [Ru(2)(dhnd)(η(6)-p-cymene)(2)](O(3)SCF(3))(2) (dhnd = 6,11-dihydroxy-5,12-naphthacenedionato) (3), respectively. The metalla-bowls were characterized by multinuclear NMR, ESI-MS, UV-Vis spectroscopy, and single crystal X-ray diffraction study of 4. The crystal structure of 4 reveals unambiguous proof for the molecular shape of the metalla-bowl and the encapsulation of one triflate anion in the cavity through hydrogen bonding. The metalla-bowl 5 has been evaluated for anion binding studies by use of amide ligand as a hydrogen bond donor and arene-Ru acceptor as a signalling unit. UV-Vis titration studies showed that 5 selectively binds with multi-carboxylate anions such as oxalate, tartrate and citrate in a 1?:?1 fashion with high binding constants of 4.0-5.5 × 10(4) M(-1). Furthermore, the addition of multi-carboxylate anions into a solution of 5 gave rise to a large enhancement of fluorescence intensity attributable to the blocking of a photo-induced electron transfer process from the arene-ruthenium moiety to the amidic donor in 5. However, the fluorescence intensity almost remains unchanged upon addition of other anions including F(-), Cl(-), PF(6)(-), MeCOO(-), NO(3)(-) and PhCOO(-), as identically seen in the UV-Vis titration experiments, pointing to the high selectivity of 5 for the sensing of multi-carboxylate anions.  相似文献   

18.
设计合成了2个1,10-邻菲啰啉并咪唑衍生物阴离子受体2-(2-羟基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉(1)和2-(2-羟基-5-溴苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉(2), 受体2的结构由X射线单晶衍射分析确证. 通过紫外-可见光谱滴定及 1H NMR滴定研究了这2个受体对F-, Cl-, Br-, I-, H2PO4-和AcO- 6种阴离子的识别传感作用及作用机理. 结果表明, 受体对AcO-, F-和H2PO4-有较强的传感作用, 溶液颜色由淡黄色变为黄色; 对Cl-的作用较弱; 而对Br-和I-则无明显作用. 通过机理研究发现, 受体与F-, H2PO4-和AcO-形成1: 1的氢键超分子, 当阴离子的量超过受体的1倍以后, 咪唑氮上的氢转移到阴离子; 受体与Cl-以氢键形成超分子复合物, 而与Br-和I-作用很弱.  相似文献   

19.
Polychlorethylene radicals, anions, and radical anions are potential intermediates in the reduction of polychlorinated ethylenes (C(2)Cl(4), C(2)HCl(3), trans-C(2)H(2)Cl(2), cis-C(2)H(2)Cl(2), 1,1-C(2)H(2)Cl(2), C(2)H(3)Cl). Ab initio electronic structure methods were used to calculate the thermochemical properties, (298.15 K), S degrees (298.15 K,1 bar), and DeltaG(S)(298.15 K, 1 bar) of 37 different polychloroethylenyl radicals, anions, and radical anion complexes, C(2)H(y)Cl(3)(-)(y)(*), C(2)H(y)Cl(3)(-)(y)(-), and C(2)H(y))Cl(4)(-)(y)(*)(-) for y = 0-3, for the purpose of characterizing reduction mechanisms of polychlorinated ethylenes. In this study, 8 radicals, 7 anions, and 22 radical anions were found to have stable structures, i.e., minima on the potential energy surfaces. This multitude of isomers for C(2)H(y)Cl(4)(-)(y)(*)(-) radical anion complexes are pi*, sigma*, and -H...Cl(-) structures. Several stable pi* radical anionic structures were obtained for the first time through the use of restricted open-shell theories. On the basis of the calculated thermochemical estimates, the overall reaction energetics (in the gas phase and aqueous phase) for several mechanisms of the first electron reduction of the polychlorinated ethylenes were determined. In almost all of the gas-phase reactions, the thermodynamically most favorable pathways involve -H...Cl(-) complexes of the C(2)H(y)Cl(4)(-)(y)(*)(-) radical anion, in which a chloride ion is loosely bound to a hydrogen of a C(2)H(x)Cl(2)(-)(x))(*) radical. The exception is for C(2)Cl(4), in which the most favorable anionic structure is a loose sigma* radical anion complex, with a nearly iso-energetic pi* radical anion. Solvation significantly changes the product energetics with the thermodynamically most favorable pathway leading to C(2)H(y)Cl(3)(-)(y)(*) + Cl(-). The results suggest that a higher degree of chlorination favors reduction, and that reduction pathways involving the C(2)H(y)Cl(3)(-)(y)(-) anions are high energy pathways.  相似文献   

20.
Mo HJ  Shen Y  Ye BH 《Inorganic chemistry》2012,51(13):7174-7184
Five imidazole-based anion receptors A-E are designed for cyanide anion recognition via hydrogen bonding interaction in water. Only receptors A [Ru(bpy)(2)(mpipH)](ClO(4))(2) (bpy is bipyridine and mpipH is 2-(4-methylphenyl)-imidazo[4,5-f]-1,10-phenanthroline) and E [Ru(2)(bpy)(4)(mbpibH(2))](ClO(4))(4) (mbpibH(2) is 1,3-bis([1,10]-phenanthroline-[5,6-d]imidazol-2-yl)benzene) selectively recognize CN(-) from OAc(-), F(-), Cl(-), Br(-), I(-), NO(3)(-), HSO(4)(-), ClO(4)(-), H(2)PO(4)(-), HCO(3)(-), N(3)(-), and SCN(-) anions in water (without organic solvent) at physiological conditions via formation of multiple hydrogen bonding interaction with binding constants of K(A(H2O)) = 345 ± 21 and K(E(H2O)) = 878 ± 41, respectively. The detection limits of A and E toward CN(-) in water are 100 and 5 μM, respectively. Receptor E has an appropriate pK(a2)* value (8.75) of N-H proton and a C-shape cavity structure with three-point hydrogen bonding, consisting of two NH and one cooperative phenyl CH hydrogen bonds. Appropriate acidity of N-H proton and multipoint hydrogen bonding are both important in enhancing the selectivity and sensitivity toward CN(-) in water. The phenyl CH···CN(-) hydrogen bonding interaction is observed by the HMBC NMR technique for the first time, which provides an efficient approach to directly probe the binding site of the receptor toward CN(-). Moreover, CN(-) induced emission lifetime change of the receptor has been exploited in water for the first time. The energy-optimized structure of E-CN adduct is also proposed on the basis of theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号