首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme catalase (EC: 1.11.1.6) has been covalently coupled onto the surface of glassy carbon (GC) powder matrix using a 16 atom spacer arm. The enzyme coupled powder was made into a paste electrode that was used to study the electrochemical properties. Standard electrochemical techniques like cyclic voltammetry, differential pulse voltammetry and flow injection analysis studies were carried out using this paste electrode. The cyclic voltammogram of the modified paste exhibited a clear increase in the reduction peak at −180 mV in the presence of hydrogen peroxide. The potential at which maximum Faradaic activity was observed was determined using differential pulse voltammetry, which showed a clear peak at −100 mV. This potential was used to monitor the response of the electrode to varying substrate concentrations using a home made setup for flow injection analysis. A linear increase in the current values in the range 0.1–1 mM hydrogen peroxide concentration was observed in our system.  相似文献   

2.
We report on direct electron transfer reactions of bilirubin oxidase at multi-walled carbon nanotube (MWCNT) modified glassy carbon electrodes (GCE). The bioelectrocatalytic oxygen reduction was recorded using linear sweep voltammetry (LSV) with BOD in solution, adsorbed and covalently linked to the nanotubes. The MWCNT modification of GC electrodes strongly enhances the oxygen reduction compared to the signals at unmodified GCE. Under anaerobic conditions with a high protein concentration in solution a pair of redox peaks with a formal potential of 450 ± 15 mV vs Ag/AgCl, 1 M KCl (pH 7.4) was found with cyclic voltammetry. The redox conversion is indicated to be surface-controlled and pH-dependent (54.5 mV/pH). The quasi-reversible redox reaction might be attributed to the trinuclear T2/T3 cluster of BOD.  相似文献   

3.
The direct electrochemistry of glucose oxidase (GOx) immobilized on a composite matrix based on chitosan (CHIT) and NdPO(4) nanoparticles (NPs) underlying on glassy carbon electrode (GCE) was achieved. The cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the modified electrode. In deaerated buffer solutions, the cyclic voltammetry of the composite films of GOx/NdPO(4) NPs/CHIT showed a pair of well-behaved redox peaks that are assigned to the redox reaction of GOx, confirming the effective immobilization of GOx on the composite film. The electron transfer rate constant was estimated to be 5.0 s(-1). The linear dynamic range for the detection of glucose was 0.15-10 mM with a correlation coefficient of 0.999 and the detection limit was estimated at about 0.08 mM (S/N=3). The calculated apparent Michaelis-Menten constant was 2.5 mM, which suggested a high affinity of the enzyme-substrate. The immobilized GOx in the NdPO(4) NPs/CHIT composite film retained its bioactivity. Furthermore, the method presented here can be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins.  相似文献   

4.
Direct electrochemistry of hemoglobin (Hb) was observed at glassy carbon electrode (GCE) modified with undoped nanocrystalline diamond (UND) and Hb multilayer films via layer-by-layer assembly. UV-VIS absorbance spectroscopy, electrochemical impedance spectroscopy and cyclic voltammograms were employed to characterize the film. The results showed that the UND had the effect of enhancing the electron transfer between Hb and the electrode surface. Hb in the multilayer films maintained its bioactivity and structure. It also exhibited a good catalytic activity towards the reduction of H(2)O(2). The reciprocal of catalytic current showed a linear dependence on the reciprocal of H(2)O(2) concentration ranging from 0.5 microM to 0.25 mM with a detection limit of 0.4 microM. The apparent Michaelis-Menten constant was estimated to be 0.019 mM.  相似文献   

5.
The electrochemical behavior of bisphenol A (BPA) was studied on poly(3,4-ethylenedioxythiophene) (PEDOT)-modified glassy carbon electrodes by cyclic voltammetry. It was observed that BPA oxidation on PEDOT film produced a BPA polymer (pBPA) showing excellent redox activity with anodic and cathodic peaks at 0.15 and 0.01 V, respectively; the former being evaluated for BPA electrochemical sensing. The amount of deposited pBPA has been estimated by electrochemical and spectroscopic analysis by X-ray photoelectron spectroscopy. The effect of scan rate and pH on the oxidation of pBPA film has been studied. The oxidation current was found to vary linearly with BPA concentration in the range 90–410 μM, and a detection limit of 55 μM was evaluated. Results of BPA amperometric detection have also been collected by using a repetitive potential step program to give a linear response to BPA in the concentration range 40–410 μM with a detection limit of 22 μM and a sensitivity of 1.57 μAμM?1?cm?2. The developed sensor showed satisfactory reproducibility and anti-interference properties and was successfully applied to BPA determination in mineral water samples.  相似文献   

6.
Hui Yao  Nan Li  Jun-Jie Zhu 《Talanta》2007,71(2):550-554
Direct electrochemical and electrocatalytic behavior of hemoglobin (Hb) immobilized on glass carbon electrode (GCE) containing gelatine (Gel) films was investigated. The characteristics of Hb/Gel film modified GC electrode were performed by using SEM microscopy, UV-vis spectroscopy and electrochemical methods. The immobilized Hb showed a couple of quasi-reversible redox peak with a formal potential of −0.38 V (versus SCE) in 0.1 M pH 7.0 PBS. The formal potential changed linearly from pH 4.03 to 8.41 with a slope value of −52.0 mV pH−1, which suggested that a proton transfer was accompanied with each electron transfer (ET) in the electrochemical reaction. The Hb/gelatine/GCE displayed a rapid amperometric response to the reduction of H2O2 and nitrite.  相似文献   

7.
The direct electrochemistry of hemoglobin can be performed by immobilizing hemoglobin in a water-soluble quantum dots (CdSe-ZnS) film on glassy carbon electrode.  相似文献   

8.
Recent work on glassy carbon electrodes for various applications is reviewed. Activation of glassy carbon electrodes by different types of polishing, heat treatment, and electrochemical methods yields enhanced rates of electron transfer. Characterization of different glassy carbon surfaces by x-ray photoelectron spectroscopy shows that polished and electrochemically pretreated surfaces contain more oxygen on the surface than do unactivated surfaces; much of this oxygen is associated with phenolic groups. Causes of activation, characterization of glassy carbon by spectroscopic methods, and the role of surface cleanliness are summarized. For simple electron-transfer reactions, removal of contaminants from the electrode surface is important. For proton-coupled electrode reactions, specific interactions of reactants with catalytic groups created on the surface during polishing tend to play an important role in electrode activation  相似文献   

9.
In this study, direct electron transfer (ET) has been achieved between an immobilised non-symbiotic plant haemoglobin class II from Beta vulgaris (nsBvHb2) and three different screen-printed carbon electrodes based on graphite (SPCE), multi-walled carbon nanotubes (MWCNT-SPCE), and single-walled carbon nanotubes (SWCNT-SPCE) without the aid of any electron mediator. The nsBvHb2 modified electrodes were studied with cyclic voltammetry (CV) and also when placed in a wall-jet flow through cell for their electrocatalytic properties for reduction of H2O2. The immobilised nsBvHb2 displayed a couple of stable and well-defined redox peaks with a formal potential (E°′) of ?33.5 mV (vs. Ag|AgCl|3 M KCl) at pH 7.4. The ET rate constant of nsBvHb2, k s, was also determined at the surface of the three types of electrodes in phosphate buffer solution pH 7.4, and was found to be 0.50 s?1 on SPCE, 2.78 s?1 on MWCNT-SPCE and 4.06 s?1 on SWCNT-SPCE, respectively. The average surface coverage of electrochemically active nsBvHb2 immobilised on the SPCEs, MWCNT-SPCEs and SWCNT-SPCEs obtained was 2.85?×?10?10 mol cm?2, 4.13?×?10?10 mol cm?2 and 5.20?×?10?10 mol cm?2. During the experiments the immobilised nsBvHb2 was stable and kept its electrochemical and catalytic activities. The nsBvHb2 modified electrodes also displayed an excellent response to the reduction of hydrogen peroxide (H2O2) with a linear detection range from 1 μM to 1000 μM on the surface of SPCEs, from 0.5 μM to 1000 μM on MWCNT-SPCEs, and from 0.1 μM to 1000 μM on SWCNT-SPCEs. The lower limit of detection was 0.8 μM, 0.4 μM and 0.1 μM at 3σ at the SPCEs, the MWCNT-SPCEs, and the SWCNT-SPCEs, respectively, and the apparent Michaelis–Menten constant, $ {\hbox{K}}_{\rm{M}}^{\rm{app}} $ , for the H2O2 sensors was estimated to be 0.32 mM , 0.29 mM and 0.27 mM, respectively.  相似文献   

10.
Solutions of the perfluoro anion-exchange membrane TosHex® in a solvent mixture composed of methanol + isopropanol + water (1:1:1) were prepared and applied in coating glassy carbon electrodes. The evaporated films were used to accumulate the Fe(CN) 6 redox couple on the electrode surface. The magnitude of the electrochemical response of the loaded films is comparable with that for Nafion® incorporated cationic redox species. The multicharged Fe(CN) 6 couple accumulated in Tosflex® film causes an ion cross-linking of the polymeric backbone, thus decreasing ion transport in the film substantially.  相似文献   

11.
The electrochemical behavior of ceftriaxone was investigated on a carbon-nanotube-modified glassy carbon (GC-CNT) electrode in a phosphate buffer solution, pH = 7.40, and the results were compared with those obtained using the unmodified one [glassy carbon (GC) electrode]. During oxidation of ceftriaxone, an irreversible anodic peak appeared, using both modified and unmodified electrodes. Cyclic voltammetric studies indicated that the oxidation process is irreversible and diffusion-controlled. The number of electrons exchanged in the electrooxidation process was obtained, and the data indicated that ceftriaxone is oxidized via a one-electron step. The results revealed that carbon nanotube promotes the rate of oxidation by increasing the peak current. In addition, ceftriaxone was oxidized at lower potentials, which thermodynamically is more favorable. These results were confirmed by impedance measurements. The electron-transfer coefficients and heterogeneous electron-transfer rate constants for ceftriaxone were reported using both the GC and GC-CNT electrodes. Furthermore, the diffusion coefficient of ceftriaxone was found to be 2.74 × 10−6 cm2 s−1. Binding of ceftriaxone to human serum albumin forms a kind of electroreactive species. The percentage of interaction of ceftriaxone with protein was also addressed. A sensitive, simple, and time-saving differential-pulse voltammetric procedure was developed for the analysis of ceftriaxone, using the GC-CNT electrode. Ceftriaxone can be determined with a detection limit of 4.03 × 10−6 M with the proposed method.  相似文献   

12.
Direct electrochemistry of heme multicofactor-containing enzymes, e.g., microbial theophylline oxidase (ThOx) and D-fructose dehydrogenase (FDH) from Gluconobacter industrius was studied on alkanethiol-modified gold electrodes and was compared with that of some previously studied complex heme enzymes, specifically, cellobiose dehydrogenase (CDH) and sulphite oxidase (SOx). The formal redox potentials for enzymes in direct electronic communication varied for ThOx from -112 to -101 mV (vs. Ag|AgCl), at pH 7.0, and for FDH from -158 to -89 mV, at pH 5.0 and pH 4.0, respectively, on differently charged alkanethiol layers. Direct and mediated by cytochrome c electrochemistry of FDH correlated with the existence of two active centres in the protein structure, i.e., the heme and the pyrroloquinoline quinone (PQQ) prosthetic groups. The effect of the alkanethiols of different polarity and charge on the surface properties of the gold electrodes necessary for adsorption and orientation of ThOx, FDH, CDH and SOx, favourable for the efficient electrode-enzyme electron transfer reaction, is discussed.  相似文献   

13.
Highly boron-doped diamond electrodes are characterized voltammetrically employing Ru(NH3)63+/2+, Fe(CN)63−/4−, benzoquinone/hydroquinone, and cytochrome c redox systems. The diamond electrodes, which are polished to nanometer finish, are initially `activated' electrochemically and then pretreated by oxidation, reduction, or polishing. All electrodes give reversible cyclic voltammetric responses for the reduction of Ru(NH3)63+ in aqueous solution.Redox systems other than Ru(NH3)63+/2+ show characteristic electrochemical behavior as a function of diamond surface pretreatment. In particular, the horse heart cytochrome c redox system is shown to give reversible voltammetric responses at Al2O3 polished boron-doped diamond electrodes. No voltammetric response for cytochrome c is detected at anodically pretreated diamond electrodes. The observations are attributed to preferential interaction of the polished diamond surface with the reactive region of the cytochrome c molecule and low interference due to a lack of protein electrode fouling.  相似文献   

14.
This work points out that electrogeneration of silica gel (SG) films on glassy carbon electrodes (GCEs) can be applied to immobilize biomolecules – hemoglobin (Hb) or glucose oxidase (GOD) or both of them in mixture – without preventing their activity. These proteins were physically entrapped in the sol–gel material in the course of the electro-assisted deposition process applied to form the thin films onto the electrode surface. SG films were prepared from a precursor solution by applying a suitable cathodic potential likely to induce a local pH increase at the electrode/solution interface, accelerating thereby polycondensation of the silica precursors with concomitant film formation. Successful immobilization of proteins was checked by various physico-chemical techniques. Both Hb and GOD were found to undergo direct electron transfer, as demonstrated by cyclic voltammetry. GCE–SG–Hb gave rise to well-defined peaks at potentials Ec = −0.29 V and Ea = −0.17 V in acetate buffer, corresponding to the FeIII/FeII redox system of heme group of the protein, while GCE–SG–GOD was characterized by the typical signals of FAD group at Ec = −0.41 V and Ea = −0.33 V in phosphate buffer. These two redox processes were also evidenced on a single voltammogram when both Hb and GOD were present together in the same SG film. Hb entrapped in the silica thin film displayed an electrocatalytic behavior towards O2 and H2O2 in solution, respectively in the mM and μM concentration ranges. Immobilized GOD kept its biocatalytic properties towards glucose. Combined use of these two proteins in mixture has proven to be promising for detection of glucose in solution via the electrochemical monitoring of oxygen consumption (decrease of the oxygen electrocatalytic signal).  相似文献   

15.
The influence of applied potential on the adsorption of organic compounds on glassy carbon (GC) electrodes has been examined using electrochemically modulated liquid chromatography (EMLC). The results not only confirm that the extent of adsorption is site dependent [Anal. Chem. 69 (1997) 4680], but also demonstrate for the first time that these sites exhibit differences in their potential dependence of adsorption. The results additionally reveal how the extent of adsorption is affected by the supporting electrolyte. Together, these results demonstrate the power of EMLC to serve as a tool for unraveling fundamental issues regarding adsorption on carbonaceous and other electrified interfaces.  相似文献   

16.
Electroreduction of oxygen in alkaline solution on glassy carbon (GC) electrodes modified with different carbon nanomaterials has been studied. Electrochemical experiments were carried out in 0.1 M KOH employing the rotating disk electrode and rotating ring-disk electrode methods. The GC disk electrodes were modified with carbon nanomaterials using polytetrafluoroethylene as a binder. Four different carbon nanomaterials were used: multiwalled carbon nanotubes, carbon black powder, and two carbide-derived carbons (CDC). For the first time, the electrocatalytic behavior of CDC materials toward oxygen reduction is explored. Electrochemical characterization of the materials showed that all the carbon nanomaterial-modified GC electrodes are highly active for the reduction of oxygen in alkaline solutions.  相似文献   

17.
Shengfu Wang  Fen Xie 《Talanta》2009,77(4):1343-58
Direct electrochemistry and electrocatalysis of heme proteins including hemoglobin (Hb), myoglobin (Mb) and horseradish peroxidase (HRP) were studied with the protein incorporated single walled carbon nanotubes (SWCNTs)-cetylramethylammonium bromide (CTAB) nanocomposite film modified glassy carbon electrodes (GCEs). The incorporated heme proteins were characterized with Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV) spectroscopy, atomic force microscopy (AFM) and electrochemistry, indicating the heme proteins in SWCNTs-CTAB nanocomposite films keep their secondary structure similar to their native states. The direct electron transfer between the heme proteins in SWCNTs-CTAB films and GCE was investigated. The electrochemical parameters such as formal potentials and apparent heterogeneous electrontransfer rate constants (ks) were estimated by square wave voltammetry with nonlinear regression analysis. The heme protein-SWCNT-CTAB electrodes show excellent electrocatalytic activities for the reduction of H2O2 and NO2, which have been utilized to determine the concentrations of H2O2 and NO2.  相似文献   

18.
19.
Flat-topped mesas are formed on glassy carbon surfaces as a result of electrochemical oxidative treatment in aqueous sodium hydroxide. The topography of the anodically exposed glassy carbon was followed by phase detection interferometric microscopy. The appearance and the distribution of the mesas were found to be related to the mode of electrochemical treatment. A threshold time, a function of applied voltage, and a threshold voltage for the formation of the mesas were found. In addition, the physical size and number of the structures increased with applied voltage.  相似文献   

20.
Bismuth-modified glassy carbon electrodes have been investigated for their suitability in sonoelectroanalysis. The stability of the bismuth film to the application of ultrasound was assessed via voltammetric and atomic force microscopy (AFM) studies which revealed little ablation at powers up to an intensity of 130 W cm–2 delivered from a 25-kHz sonic horn. Furthermore, bismuth-film-modified glassy carbon electrodes were evaluated for the sonoelectroanalytical quantification of zinc and cadmium. Detection limits of 2×10–7 M and 6×10–9 M respectively were found after a 60-s deposition time via an acoustically assisted deposition protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号