首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Smog chamber/FTIR techniques were used to study the Cl atom initiated oxidation of 4:2 fluorotelomer alcohol (C(4)F(9)CH(2)CH(2)OH, 4:2 FTOH) in the presence of NO(x) in 700 Torr of N(2)/O(2) diluent at 296 K. Chemical activation effects play an important role in the atmospheric chemistry of the peroxy, and possibly the alkoxy, radicals derived from 4:2 FTOH. Cl atoms react with C(4)F(9)CH(2)CH(2)OH to give C(4)F(9)CH(2)C(*)HOH radicals which add O(2) to give chemically activated alpha-hydroxyperoxy radicals, [C(4)F(9)CH(2)C(OO(*))HOH]*. In 700 Torr of N(2)/O(2) at 296 K, approximately 50% of the [C(4)F(9)CH(2)C(OO(*))HOH]* radicals decompose "promptly" to give HO(2) radicals and C(4)F(9)CH(2)CHO, the remaining [C(4)F(9)CH(2)C(OO(*))HOH]* radicals undergo collisional deactivation to give thermalized peroxy radicals, C(4)F(9)CH(2)C(OO(*))HOH. Decomposition to HO(2) and C(4)F(9)CH(2)CHO is the dominant atmospheric fate of the thermalized peroxy radicals. In the presence of excess NO, the thermalized peroxy radicals react to give C(4)F(9)CH(2)C(O(*))HOH radicals which then decompose at a rate >2.5 x 10(6) s(-1) to give HC(O)OH and the alkyl radical C(4)F(9)CH(2)(*). The primary products of 4:2 FTOH oxidation in the presence of excess NO(x) are C(4)F(9)CH(2)CHO, C(4)F(9)CHO, and HCOOH. Secondary products include C(4)F(9)CH(2)C(O)O(2)NO(2), C(4)F(9)C(O)O(2)NO(2), and COF(2). In contrast to experiments conducted in the absence of NO(x), there was no evidence (<2% yield) for the formation of the perfluorinated acid C(4)F(9)C(O)OH. The results are discussed with regard to the atmospheric chemistry of fluorotelomer alcohols.  相似文献   

2.
Two peptide sequences from PARK9 Parkinson's disease gene, ProAspGluLysHisGluLeu, (P(1)D(2)E(3)K(4)H(5)E(6)L(7)) (1) and PheCysGlyAspGlyAlaAsnAspCysGly (F(1)C(2)G(3)D(4)G(5)A(6)N(7)D(8)C(9)G(10)) (2) were tested for Mn(II), Zn(II) and Ca(II) binding. The fragments are located from residues 1165 to 1171 and 1184 to 1193 in the PARK9 encoded protein. This protein can protect cells from poisoning of manganese, which is an environmental risk factor for a Parkinson's disease-like syndrome. Mono- and bi-dimensional NMR spectroscopy has been used to understand the details of metal binding sites at different pH values and at different ligand to metal molar ratios. Mn(II) and Zn(II) coordination with peptide (1) involves imidazole N(ε) or N(δ) of His(5) and carboxyl γ-O of Asp(2), Glu(3) and Glu(6) residues. Six donor atoms participate in Mn(II) binding resulting in a distorted octahedral geometry, possibly involving bidentate interaction of carboxyl groups; four donor atoms participate in Zn(II) binding resulting in a tetracoordinate geometry. Mn(II) and Zn(II) coordination involves the two cysteine residues with peptide (2); Mn(II) accepts additional ligand bonds from the carboxyl γ-O of Asp(4) and Asp(8) to complete the coordination sphere; the unoccupied sites may contain solvent molecules. The failure of Ca(II) ions to bind to either peptide (1) or (2) appears to result, under our conditions, from the absence of chelating properties in the chosen fragments.  相似文献   

3.
King RB 《Inorganic chemistry》2004,43(14):4241-4247
Most cyclopentadienylmetallaboranes containing the vertex units CpM (M = Co, Rh, Ir; Cp = eta(5)-cyclopentadienyl ring, mainly eta(5)-Me(5)C(5)) and CpRu donating two and one skeletal electrons, respectively, have structures closely related to binary boranes or borane anions. Smaller clusters of this type, such as metallaborane analogues of arachno-B(4)H(10) (e.g., (CpIr)(2)B(2)H(8)), nido-B(5)H(9) (e.g., (CpRh)(2)B(3)H(7) and (CpRu)(2)B(3)H(9)), arachno-B(5)H(11) (e.g., CpIrB(4)H(10)), B(6)H(6)(2)(-) (e.g., (CpCo)(4)B(2)H(4)), nido-B(6)H(10) (e.g., CpIrB(5)H(9) and (CpRu)(2)B(4)H(10)), and arachno-B(6)H(12) (e.g., (CpIr)(2)B(4)H(10)), have the same skeletal electron counts as those of the corresponding boranes. However, such clusters with eight or more vertices, such as metallaborane analogues of B(8)H(8)(2)(-) (e.g., (CpCo)(4)B(4)H(4)), arachno-B(8)H(14) (e.g., (CpRu)(2)B(6)H(12)), and nido-B(10)H(14) (e.g., (CpRu)(2)B(8)H(12)), have two skeletal electrons less than those of the corresponding metal-free boranes, analogous to the skeletal electron counts of isocloso boranes relative to those of metal-free deltahedral boranes. Some metallaboranes have structures not analogous to metal-free boranes but instead analogous to metal carbonyl clusters such as 3-capped square pyramidal (CpRu)(2)B(4)H(8) and (CpRu)(3)B(3)H(8) analogous to H(2)Os(6)(CO)(16) and capped octahedral (CpRh)(3)B(4)H(4) analogous to Os(7)(CO)(21). In the metallaborane structures closely related to metal-free boranes, the favored degrees of BH and CpM vertices appear to be 5 and 6, respectively.  相似文献   

4.
Investigation of the insertion reactivity of the tethered silylalkyl complex (η(5)-C(5)Me(4)SiMe(2)CH(2)-κC)(2)U (1) has led to a series of new reactions for U-C bonds. Elemental sulfur reacts with 1 by inserting two sulfur atoms into each of the U-C bonds to form the bis(tethered alkyl disulfide) complex (η(5):η(2)-C(5)Me(4)SiMe(2)CH(2)S(2))(2)U (2). The bulky substrate N,N'-diisopropylcarbodiimide, (i)PrN═C═N(i)Pr, inserts into only one of the U-C bonds of 1 to produce the mixed-tether complex (η(5)-C(5)Me(4)SiMe(2)CH(2)-κC)U[η(5)-C(5)Me(4)SiMe(2)CH(2)C((i)PrN)(2)-κ(2)N,N'] (3). Carbon monoxide did not exclusively undergo a simple insertion into the U-C bond of 3 but instead formed {μ-[η(5)-C(5)Me(4)SiMe(2)CH(2)C(═N(i)Pr)O-κ(2)O,N]U[OC(C(5)Me(4)SiMe(2)CH(2))CN((i)Pr)-κ(2)O,N](2) (4) in a cascade of reactions that formally includes U-C bond cleavage, C-N bond cleavage of the amidinate ligand, alkyl or silyl migration, U-O, C-C, and C-N bond formations, and CO insertion. The reaction of 3 with isoelectronic tert-butyl isocyanide led to insertion of the substrate into the U-C bond, but with a rearrangement of the amidinate ligand binding mode from κ(2) to κ(1) to form [η(5):η(2)-C(5)Me(4)SiMe(2)CH(2)C(═N(t)Bu)]U[η(5)-C(5)Me(4)SiMe(2)CH(2)C(═N(i)Pr)N((i)Pr)-κN] (5). The product of double insertion of (t)BuN≡C into the U-C bonds of 1, namely [η(5):η(2)-C(5)Me(4)SiMe(2)CH(2)C(═N(t)Bu)](2)U (6), was found to undergo an unusual thermal rearrangement that formally involves C-H bond activation, C-C bond cleavage, and C-C bond coupling to form the first formimidoyl actinide complex, [η(5):η(5):η(3)-(t)BuNC(CH(2)SiMe(2)C(5)Me(4))(CHSiMe(2)C(5)Me(4))]U(η(2)-HC═N(t)Bu) (7).  相似文献   

5.
Both (PNP)Re(H)(4) and (PNP)ReH(cyclooctyne) (PNP(i)(Pr) = ((i)Pr(2)PCH(2)SiMe(2))(2)N) react with alkylpyridines NC(5)H(4)R to give first (PNP)ReH(2)(eta(2)-pyridyl) and cyclooctene and then, when not sterically blocked, (PNP)Re(eta(2)-pyridyl)(2) and cyclooctane. The latter are shown by NMR, X-ray diffraction, and DFT calculations to have several energetically competitive isomeric structures and pyridyl N donation in preference to PNP amide pi-donation. DFT studies support NMR solution evidence that the most stable bis pyridyl structure is one that is doubly eta(2)- with the pyridyl N donating to the metal center. When both ortho positions carry methyl substituents, cyclooctane and the carbyne complex (PNP)ReH(tbd1;C-pyridyl) are produced. Excess 2-vinyl pyridine reacts with (PNP)Re(H)(4) preferentially at the vinyl group, to give 2-ethyl pyridine and the sigma-vinyl complex (PNP)ReH[eta(2)-CH=CH(2-py)]. The DFT and X-ray structures show, by various comparisons, the ability of the PNP amide nitrogen to pi-donate to an otherwise unsaturated d(4) Re(III) center, showing short Re-N distances consistent with the presence of pi-donation.  相似文献   

6.
Despite considerable attention in the literature being given to the desorption behaviour of smaller volatiles, the thermal properties of complex organics, such as ethanol (C(2)H(5)OH), which are predicted to be formed within interstellar ices, have yet to be characterized. With this in mind, reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to probe the adsorption and desorption of C(2)H(5)OH deposited on top of water (H(2)O) films of various thicknesses grown on highly oriented pyrolytic graphite (HOPG) at 98 K. Unlike many other molecules detected within interstellar ices, C(2)H(5)OH has a comparable sublimation temperature to H(2)O and therefore gives rise to a complicated desorption profile. RAIRS and TPD show that C(2)H(5)OH is incorporated into the underlying ASW film during heating, due to a morphology change in both the C(2)H(5)OH and H(2)O ices. Desorption peaks assigned to C(2)H(5)OH co-desorption with amorphous, crystalline (CI) and hexagonal H(2)O-ice phases, in addition to C(2)H(5)OH multilayer desorption are observed in the TPD. When C(2)H(5)OH is deposited beneath ASW films, or is co-deposited as a mixture with H(2)O, complete co-desorption is observed, providing further evidence of thermally induced mixing between the ices. C(2)H(5)OH is also shown to modify the desorption of H(2)O at the ASW-CI phase transition. This behaviour has not been previously reported for more commonly studied volatiles found within astrophysical ices. These results are consistent with astronomical observations, which suggest that gas-phase C(2)H(5)OH is localized in hotter regions of the ISM, such as hot cores.  相似文献   

7.
The interactions of sodium dodecyl sulfate (SDS) with poly(ethylene oxide)/poly(alkylene oxide) (E/A) block copolymers are explored in this study. With respect to the specific compositional characteristics of the copolymer, introduction of SDS can induce fundamentally different effects to the self-assembly behavior of E/A copolymer solutions. In the case of the E(18)B(10)-SDS system (E = poly(ethylene oxide) and B = poly(butylene oxide)) development of large surfactant-polymer aggregates was observed. In the case of B(20)E(610)-SDS, B(12)E(227)B(12)-SDS, E(40)B(10)E(40)-SDS, E(19)P(43)E(19)-SDS (P = poly(propylene oxide)), the formation of smaller particles compared to pure polymeric micelles points to micellar suppression induced by the ionic surfactant. This effect can be ascribed to a physical binding between the hydrophobic block of unassociated macromolecules and the non-polar tail of the surfactant. Analysis of critical micelle concentrations (cmc(*)) of polymer-surfactant aqueous solutions within the framework of regular solution theory for binary surfactants revealed negative deviations from ideal behavior for E(40)B(10)E(40)-SDS and E(19)P(43)E(19)-SDS, but positive deviations for E(18)B(10)-SDS. Ultrasonic studies performed for the E(19)P(43)E(19)-SDS system enabled the identification of three distinct regions, corresponding to three main steps of the complexation; SDS absorption to the hydrophobic backbone of polymer, development of polymer-surfactant complexes and gradual breakdown of the mixed aggregates.  相似文献   

8.
A supported, single-site Lewis acid, ≡SiOB(C(6)F(5))(2), was prepared by water-catalyzed grafting of B(C(6)F(5))(3) onto the surface of amorphous silica, and its subsequent use as a cocatalyst for heterogeneous olefin polymerization was explored. Although B(C(6)F(5))(3) has been reported to be unreactive toward silica in the absence of a Br?nsted base, we find that it can be grafted even at room temperature, albeit slowly. The mechanism was investigated by (1)H and (19)F NMR, in both the solution and solid states. In the presence of a trace amount of H(2)O, either added intentionally or formed in situ by borane-induced dehydration of silanol pairs, the adduct (C(6)F(5))(3)B·OH(2) hydrolyzes to afford C(6)F(5)H and (C(6)F(5))(2)BOH. The latter reacts with the surface hydroxyl groups of silica to yield ≡SiOB(C(6)F(5))(2) sites and regenerate H(2)O. When B(C(6)F(5))(3) is present in excess, the resulting grafted boranes appear to be completely dry, due to the eventual formation of [(C(6)F(5))(2)B](2)O. The immobilized, tri-coordinate Lewis acid sites were characterized by solid-state (11)B and (19)F NMR, IR, elemental analysis, and C(5)H(5)N-TPD. Their ability to activate two molecular C(2)H(4) polymerization catalysts, Cp(2)ZrMe(2) and an (α-iminocarboxamidato)nickel(II) complex, was explored.  相似文献   

9.
Compounds NDUF-1 ([C(6)H(14)N(2)](UO(2))(2)F(6); P2(1)/c, a = 6.9797(15) A, b = 8.3767(15) A, c = 23.760(5) A, beta = 91.068(4) degrees, V = 1388.9(5) A(3), Z = 4), NDUF-2 ([C(6)H(14)N(2)](2)(UO(2))(2)F(5)UF(7).H(2)O), NDUF-3 ((NH(4))(7)U(6)F(31); R3, a = 15.4106(8) A, c = 10.8142(8) A, V = 2224.1(2) A(3), Z = 3), and NDUF-4 ([NH(4)]U(3)F(13)) have been synthesized hydrothermally from fixed composition reactant mixtures over variable time periods [DABCO (C(6)H(12)N(2)), UO(2)(NO(3))(2).6H(2)O, HF, and H(2)O; 2-14 days]. Observed is a systematic evolution of the structural building units within these materials from the UO(2)F(5) pentagonal bipyramid in NDUF-1 and -2 to the UF(8) trigonal prism in NDUF-2 and finally to the UF(9) polyhedron in NDUF-3 and -4 as a function of reaction time. Coupled to this coordination change is a reduction of U(VI) to U(IV) as well as a breakdown of the organic structure-directing agent from DABCO to NH(4)(+). These processes contribute to a structural transition from layered topologies (NDUF-1) to chain (NDUF-2), back to layered (NDUF-3), and ultimately to framework (NDUF-4) connectivities. The synthesis conditions, crystal structures, and possible transformation mechanisms within this system are presented.  相似文献   

10.
Synthetic and kinetic studies are used to uncover mechanistic details of the reduction of O(2) to water mediated by dirhodium complexes. The mixed-valence Rh(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2) (1, tfepma = MeN[P(OCH(2)CF(3))(2)](2), CN(t)Bu = tert-butyl isocyanide) complex is protonated by HCl to produce Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)H (2), which promotes the reduction of O(2) to water with concomitant formation of Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(4) (3). Reactions of the analogous diiridium complexes permit the identification of plausible reaction intermediates. Ir(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2) (4) can be protonated to form the isolable complex Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)H (5), which reacts with O(2) to form Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)(OOH) (6). In addition, 4 reacts with O(2) to form Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2)(η(2)-O(2)) (7), which can be protonated by HCl to furnish 6. Complexes 6 and 7 were both isolated in pure form and structurally and spectroscopically characterized. Kinetics examination of hydride complex 5 with O(2) and HCl furnishes a rate law that is consistent with an HCl-elimination mechanism, where O(2) binds an Ir(0) center to furnish an intermediate η(2)-peroxide intermediate. Dirhodium congener 2 obeys a rate law that not only is also consistent with an analogous HCl-elimination mechanism but also includes terms indicative of direct O(2) insertion and a unimolecular isomerization prior to oxygenation. The combined synthetic and mechanistic studies bespeak to the importance of peroxide and hydroperoxide intermediates in the reduction of O(2) to water by dirhodium hydride complexes.  相似文献   

11.
The diphosphaazide complex (Mes*NPP)Nb(N[Np]Ar)3 (Mes* = 2,4,6-tri-tert-butylphenyl, Np = neopentyl, Ar = 3,5-Me2C6H3), 1, has previously been reported to lose the P2 unit upon gentle heating, to form (Mes*N)Nb(N[Np]Ar)3, 2. The first-order activation parameters for this process have been estimated here using an Eyring analysis to have the values Delta H(double dagger) = 19.6(2) kcal/mol and Delta S(double dagger) = -14.2(5) eu. The eliminated P2 unit can be transferred to the terminal phosphide complexes P[triple bond]M(N[(i)Pr]Ar)3, 3-M (M = Mo, W), and [P[triple bond]Nb(N[Np]Ar)3](-), 3-Nb, to give the cyclo-P3 complexes (P3)M(N[(i)Pr]Ar)3 and [(P3)Nb(N[Np]Ar)3](-). These reactions represent the formal addition of a P[triple bond]P triple bond across a M[triple bond]P triple bond and are the first efficient transfers of the P2 unit to substrates present in stoichiometric quantities. The related complex (OC)5W(Mes*NPP)Nb(N[Np]Ar)3, 1-W(CO)5, was used to transfer the (P2)W(CO)5 unit in an analogous manner to the substrates 3-M (M = Mo, W, Nb) as well as to [(OC)5WP[triple bond]Nb(N[Np]Ar)3](-). The rate constants for the fragmentation of 1 and 1-W(CO)5 were unchanged in the presence of the terminal phosphide 3-Mo, supporting the hypothesis that molecular P2 and (P2)W(CO)5, respectively, are reactive intermediates. In a reaction related to the combination of P[triple bond]P and M[triple bond]P triple bonds, the phosphaalkyne AdC[triple bond]P (Ad = 1-adamantyl) was observed to react with 3-Mo to generate the cyclo-CP2 complex (AdCP2)Mo(N[(i)Pr]Ar)3. Reactions of the electrophiles Ph3SnCl, Mes*NPCl, and AdC(O)Cl with the anionic, nucleophilic complexes [(OC)5W(P3)Nb(N[Np]Ar)3](-) and [{(OC)5W}2(P3)Nb(N[Np]Ar)3](-) yielded coordinated eta(2)-triphosphirene ligands. The Mes*NPW(CO)5 group of one such product engages in a fluxional ring-migration process, according to NMR spectroscopic data. The structures of (OC)5W(P3)W(N[(i)Pr]Ar)3, [(Et2O)Na][{(OC)5W}2(P3)Nb(N[Np]Ar)3], (AdCP2)Mo(N[(i)Pr]Ar)3, (OC)5W(Ph3SnP3)Nb(N[Np]Ar)3, Mes*NP(W(CO)5)P3Nb(N[Np]Ar)3, and {(OC)5W}2AdC(O)P3Nb(N[Np]Ar)3, as determined by X-ray crystallography, are discussed in detail.  相似文献   

12.
The awareness of symptoms of global warming and its seriousness urges the development of technologies to reduce greenhouse gas emissions. Carbon dioxide (CO(2)) is a representative greenhouse gas, and numerous methods to capture and storage CO(2) have been considered. Recently, the technology to remove high-temperature CO(2) by sorption has received lots of attention. In this study, hydrotalcite, which has been known to have CO(2) sorption capability at high temperature, was impregnated with K(2)CO(3) to enhance CO(2) sorption uptake, and the mechanism of CO(2) sorption enhancement on K(2)CO(3)-promoted hydrotalcite was investigated. Thermogravimetric analysis was used to measure equilibrium CO(2) sorption uptake and to estimate CO(2) sorption kinetics. The analyses based on N(2) gas physisorption, X-ray diffractometry, Fourier transform infrared spectrometry, Raman spectrometry, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy were carried out to elucidate the characteristics of sorbents and the mechanism of enhanced CO(2) sorption. The equilibrium CO(2) sorption uptake on hydrotalcite could be increased up to 10 times by impregnation with K(2)CO(3), and there was an optimal amount of K(2)CO(3) for a maximum equilibrium CO(2) sorption uptake. In the K(2)CO(3)-promoted hydrotalcite, K(2)CO(3) was incorporated without changing the structure of hydrotalcite and it was thermally stabilized, resulting in the enhanced equilibrium CO(2) sorption uptake and fast CO(2) sorption kinetics.  相似文献   

13.
Recently discovered catalytic reactions with ruthenium and lanthanide metal complexes have extended the scope of 1-alkynes as useful reagents. The specific formation of aryl-substituted (Z)-1,3-enzymes via the dimerization of HC(triple bond) CR(1) (R(1) = aryl) has been attained using dimeric lanthanide complexes, the catalytic activity of which appears to be unaffected by time. The dimerization of HC(triple bond) CR(2) (R(2) = t-Bu, SiMe(3)) catalyzed by Ru(cod)(cot)/PR(3) or RuH(2)(PPh(3))(3) produces a good yield of butatrienes (Z)R(2)CH=C=C=CHR(2) with a high degree of selectivity. Under certain conditions, HC(triple bond) C=SiMe(3) dimerizes to yield exclusively (Z)-M(3)Si-C(triple bond) C-CH=CH-SiMe(3). The hydration of HC(triple bond)CR(3) (R(3) = alkyl, aryl) catalyzed by RuCl(2)/PR'(3) or CpRuCl(PR"(3))(2) has realized the first example of anti-Markovnikov regioselectivity in an addition reaction of water that produces aldehydes R(3)CH(2)bond;CHO. The application of this reaction to propargylic alcohols has lead to their formal isomerization to alpha,beta-unsaturated aldehydes. In contrast, the addition of amines R(4)bond;NH(2) (R(4) = aryl) to HCtbond;CR(5) (R(5) = alkyl, aryl) conforms to Markovnikov's rule to produce ketimines R(5)bond;(C=NR(4))bond;CH(3) when catalyzed by a Ru(3)(CO)(12)/additive. Since the reaction can be performed in air without the need for any solvents, it enables the practical synthesis of aromatic ketimines, which are difficult to prepare by conventional methods. The synthesis of indoles using deactivated anilines is one practical application of this reaction. The mechanisms of some of these reactions have been analyzed in detail with the aid of theoretical calculations.  相似文献   

14.
Reaction of [(IPr)Cu-OtBu] (1) with pinB-SiMe(2)Ph (2) leads to the Cu-silyl complex [(IPr)Cu-SiMe(2)Ph] (3). Insertion of CO(2) into the Cu-Si bond of 3 is followed by transformation of the resulting silanecarboxy complex [(IPr)Cu-O(2)CSiMe(2)Ph] (4) to the silanolate complex [(IPr)Cu-OSiMe(2)Ph] (5) via extrusion of CO. As 5 reacts readily with 2 to regenerate 3, a catalytic CO(2) reduction to CO is feasible. The individual steps were studied by in situ(13)C NMR spectroscopy of a series of stoichiometric reactions. Complexes 3, 4, and 5 were isolated and fully characterized, including single-crystal X-ray diffraction studies. Interestingly, the catalytic reduction of CO(2) using silylborane 2 as a stoichiometric reducing agent leads not only to CO and pinB-O-SiMe(2)Ph but also to PhMe(2)Si-CO(2)-SiMe(2)Ph as an additional reduction product.  相似文献   

15.
Ordered mesoporous Fe(3)O(4) with crystalline walls (inverse spinel structure) has been synthesized for the first time, representing to the best of our knowledge, the first synthesis of a reduced mesoporous iron oxide. Synthesis was achieved by reducing ordered mesoporous alpha-Fe(2)O(3) (corundum structure) to Fe(3)O(4) spinel then to gamma-Fe(2)O(3) by oxidation, while preserving the ordered mesostructure and crystalline walls throughout. Such solid/solid transformations demonstrate the stability of the mesostructure to structural phase transitions from the hexagonal close packed oxide subarray of alpha-Fe(2)O(3) (corundum structure) to the cubic close packed subarray of Fe(3)O(4) spinel and gamma-Fe(2)O(3). Preliminary magnetic measurements reveal that the spins in both Fe(3)O(4) and gamma-Fe(2)O(3) are frozen at 295 K, despite the wall thickness (7 nm) being less than the lower limit for such freezing in corresponding nanoparticles (>8 nm).  相似文献   

16.
The reaction of electron-rich carbene-precursor olefins containing two imidazolinylidene moieties [(2,4,6-Me(3)C(6)H(2)CH(2))NCH(2)CH(2)N(R)Cdbond;](2) (2a: R=CH(2)CH(2)OMe, 2 b R=CH(2)Mes), bearing at least one 2,4,6-trimethylbenzyl (R=CH(2)Mes) group on the nitrogen atom, with [RuCl(2)(arene)](2) (arene=p-cymene, hexamethylbenzene) selectively leads to two types of complexes. The cleavage of the chloride bridges occurs first to yield the expected (carbene) (arene)ruthenium(II) complex 3. Then a further arene displacement reaction takes place to give the chelated eta(6)-mesityl,eta(1)-carbene-ruthenium complexes 4 and 5. An analogous eta(6)-arene,eta(1)-carbene complex with a benzimidazole frame 6 was isolated from an in situ reaction between [RuCl(2)(p-cymene)](2), the corresponding benzimidazolium salt and cesium carbonate. On heating, the RuCl(2)(imidazolinylidene) (p-cymene) complex 8, with p-methoxybenzyl pendent groups attached to the N atoms, leads to intramolecular p-cymene displacement and to the chelated eta(6)-arene,eta(1)-carbene complex 9. On reaction with AgOTf and the propargylic alcohol HCtbond;CCPh(2)OH, compounds 4-6 were transformed into the corresponding ruthenium allenylidene intermediates (4-->10, 5-->11, 6-->12). The in situ generated intermediates 10-12 were found to be active and selective catalysts for ring-closing metathesis (RCM) or cycloisomerisation reactions depending on the nature of the 1,6-dienes. Two complexes [RuCl(2)[eta(1)-CN(CH(2)C(6)H(2)Me(3)-2,4,6)CH(2)CH(2)N- (CH(2)CH(2)OMe)](C(6)Me(6))] 3 with a monodentate carbene ligand and [RuCl(2)[eta(1)-CN[CH(2)(eta(6)-C(6)H(2)Me(3)-2,4,6)]CH(2)CH(2)N-(CH(2)C(6)H(2)Me(3)-2,4,6)]] 5 with a chelating carbene-arene ligand were characterised by X-ray crystallography.  相似文献   

17.
The pulse radiolysis of aqueous NO has been reinvestigated, the variances with the prior studies are discussed, and a mechanistic revision is suggested. Both the hydrated electron and the hydrogen atom reduce NO to yield the ground-state triplet (3)NO(-) and singlet (1)HNO, respectively, which further react with NO to produce the N(2)O(2)(-) radical, albeit with the very different specific rates, k((3)NO(-) + NO) = (3.0 +/- 0.8) x 10(9) and k((1)HNO + NO) = (5.8 +/- 0.2) x 10(6) M(-)(1) s(-)(1). These reactions occur much more rapidly than the spin-forbidden acid-base equilibration of (3)NO(-) and (1)HNO under all experimentally accessible conditions. As a result, (3)NO(-) and (1)HNO give rise to two reaction pathways that are well separated in time but lead to the same intermediates and products. The N(2)O(2)(-) radical extremely rapidly acquires another NO, k(N(2)O(2)(-) + NO) = (5.4 +/- 1.4) x 10(9) M(-)(1) s(-)(1), producing the closed-shell N(3)O(3)(-) anion, which unimolecularly decays to the final N(2)O + NO(2)(-) products with a rate constant of approximately 300 s(-)(1). Contrary to the previous belief, N(2)O(2)(-) is stable with respect to NO elimination, and so is N(3)O(3)(-). The optical spectra of all intermediates have also been reevaluated. The only intermediate whose spectrum can be cleanly observed in the pulse radiolysis experiments is the N(3)O(3)(-) anion (lambda(max) = 380 nm, epsilon(max) = 3.76 x 10(3) M(-)(1) cm(-)(1)). The spectra previously assigned to the NO(-) anion and to the N(2)O(2)(-) radical are due, in fact, to a mixture of species (mainly N(2)O(2)(-) and N(3)O(3)(-)) and to the N(3)O(3)(-) anion, respectively. Spectral and kinetic evidence suggests that the same reactions occur when (3)NO(-) and (1)HNO are generated by photolysis of the monoprotonated anion of Angeli's salt, HN(2)O(3)(-), in NO-containing solutions.  相似文献   

18.
The diastereoselective addition of Ph(2)PH to the chiral ortho-substituted eta(6)-benzaldimine complexes (eta(6)-o-X-C(6)H(4)CH=NAr)Cr(CO)(3) (1, X = MeO, Ar = p-C(6)H(4)OMe; 2, X = Cl, Ar = Ph) leads to the formation of the corresponding chiral aminophosphines (alpha-P,N) Ph(2)P-CH(Ar(1))-NHAr(2) (3, Ar(1) = o-C(6)H(4)(OCH(3))[Cr(CO)(3)], Ar(2) = p-C(6)H(4)OCH(3); 4, Ar(1) = o-C(6)H(4)Cl[Cr(CO)(3)], Ar(2) = Ph) in equilibrium with the starting materials. The uncomplexed benzaldimine (o-ClC(6)H(4)CH=NPh), 2', analogously produces an equilibrium amount of the corresponding aminophosphine Ph(2)P-CH(Ar(1))-NHAr(2) (4', Ar(1) = o-C(6)H(4)Cl, Ar(2) = Ph). Depending on the equilibrium constant, the subsequent addition of (1)/(2) equiv of [RhCl(COD)](2) (COD = 1,5-cyclooctadiene) leads to either Ph(2)PH oxidative addition in the case of 3 or to the corresponding [RhCl(COD)(alpha-P,N)] complexes [RhCl(COD)(Ph(2)P-CH[o-C(6)H(4)Cl[Cr(CO)(3)]]-NHPh)] (5) and [RhCl(COD)(Ph(2)P-CH(o-C(6)H(4)Cl)-NHPh)] (5') in the cases of the aminophosphines 4 and 4'. The addition of the latter ligands, as racemic mixtures, to (1)/(4) equiv of [Rh(CO)(2)Cl](2) leads to the [RhCl(CO)(alpha-P,N)(2)] complexes [RhCO(Ph(2)P-CH[o-C(6)H(4)Cl[Cr(CO)(3)]]-NHPh)(2)Cl] (7) or [RhCO(Ph(2)P-CH(o-C(6)H(4)Cl)-NHPh)(2)Cl] (7') as mixtures of (R(C),S(C))/(S(C),R(C)) and (R(C),R(C))/(S(C),S(C)) diastereomers. The rhodium complexes 5 and 7' have been fully characterized by IR and (31)P NMR spectroscopies and X-ray crystallography. These compounds exhibit intramolecular Rh-Cl.H-N interactions in the solid state and in solution. The stability of the new rhodium complexes has been studied under different CO pressures. Under 1 atm of CO, 5 is converted to an unstable complex [RhCl(CO)(2)(alpha-P,N)], 6, which undergoes ligand redistribution leading to 7 plus an unidentified complex. This reaction is inhibited under higher CO or syngas pressure, as confirmed by the observation of the same catalytic activity in hydroformylation when styrene was added to a catalytic mixture that was either freshly prepared or left standing for 20 h under high CO pressure.  相似文献   

19.
Several new polyhydride complexes of rhenium containing the tridentate phosphine PhP(CH(2)CH(2)CH(2)PCy(2))(2) (Cyttp) were synthesized and characterized by (1)H and (31)P{(1)H} NMR and IR spectroscopy. The solid state structure of the previously reported ReH(5)(Cyttp) (1) was determined by X-ray crystallography. 1 crystallizes in the space group P2(1)/m with the following unit cell parameters: a = 8.582(2) ?, b = 19.690(2) ?, c = 10.800(2) ?, beta = 95.57(1) degrees, and Z = 2. The molecule adopts a classical polyhydride, triangulated dodecahedral structure, with the three phosphorus atoms and one hydrogen atom occupying the B sites, and the remaining hydrogen atoms occupying the A sites. 1 is protonated by HSbF(6) (or HBF(4)) to yield [ReH(4)(eta(2)-H(2))(Cyttp)]SbF(6) (3), which was shown by X-ray diffraction techniques (space group P&onemacr;, unit cell parameters: a = 9.874(2) ?, b = 14.242(4) ?, c = 16.198(2) ?, alpha = 99.12(2) degrees, beta = 98.85(2) degrees, gamma = 109.42(2) degrees, and Z = 2) to contain a nonclassical polyhydride cation with a triangulated dodecahedral structure in the solid. The same structure is suggested in solution by (1)H NMR data (including T(1) measurements). 3 is inert to loss of H(2) and is unaffected by CO, t-BuNC, and P(OMe)(3) at room temperature. In contrast, 1 reacts with a variety of reagents to afford classical tetrahydride complexes which are thought also to possess a triangulated dodecahedral structure, with the hydrogens in the A sites, from spectroscopic evidence. Accordingly, CS(2), p-O(2)NC(6)H(4)NCS, and EtOC(O)NCS (X=C=S) insert into an Re-H bond to yield ReH(4)(SCH=X)(Cyttp) (5-7, respectively). MeI cleaves one Re-H bond to afford ReH(4)I(Cyttp) (8), and [C(7)H(7)]BF(4) abstracts hydride in the presence of MeCN, t-BuNC, CyNC, or P(OMe)(3) (L) to give [ReH(4)L(Cyttp)]BF(4) (9-12, respectively). A related pentahydride, ReH(5)(ttp) (2, ttp = PhP(CH(2)CH(2)CH(2)PPh(2))(2)), also reacts with HSbF(6) to yield [ReH(6)(ttp)]SbF(6) (4), which appears to be a nonclassical polyhydride in solution by T(1) measurements.  相似文献   

20.
The electrochemistry of gold(III) mono- and bis-quinoxalinoporphyrins was examined in CH(2)Cl(2) or PhCN containing 0.1 M tetra-n-butylammonium perchlorate (TBAP) before and after the addition of trifluoroacetic acid to solution. The investigated porphyrins are represented as Au(PQ)PF(6) and Au(QPQ)PF(6), where P is the dianion of the 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)porphyrin and Q is a quinoxaline group fused to a β,β'-pyrrolic position of the porphyrin macrocycle; in Au(QPQ)PF(6) there is a linear arrangement where the quinoxalines are fused to pyrrolic positions that are opposite each other. The porphyrin without the fused quinoxaline groups, Au(P)PF(6), was also investigated under the same solution conditions. In the absence of acid, all three gold(III) porphyrins undergo a single reversible Au(III)/Au(II) process leading to the formation of a Au(II) porphyrin which can be further reduced at more negative potentials to give stepwise the Au(II) porphyrin π-anion radical and dianion, respectively. However, in the presence of acid, the initial Au(III)/Au(II) processes of Au(PQ)PF(6) and Au(QPQ)PF(6) are followed by an internal electron transfer and protonation to regenerate new Au(III) porphyrins assigned as Au(III)(PQH)(+) and Au(III)(QPQH)(+). Both protonated gold(III) quinoxalinoporphyrins then undergo a second Au(III)/Au(II) process at more negative potentials. The electrogenerated monoprotonated monoquinoxalinoporphyrin, Au(II)(PQH), is then further reduced to its π-anion radical and dianion forms, but this is not the case for the monoprotonated bis-quinoxalinoporphyrin, Au(II)(QPQH), which accepts a second proton and is rapidly converted to Au(III)(HQPQH)(+) before undergoing a third Au(III)/Au(II) process to produce Au(II)(HQPQH) as a final product. Thus, Au(P)PF(6) undergoes one metal-centered reduction while Au(PQ)PF(6) and Au(QPQ)PF(6) exhibit two and three Au(III)/Au(II) processes, respectively. These unusual multistep sequential Au(III)/Au(II) processes were monitored by thin-layer spectroelectrochemistry and a reduction/oxidation mechanism for Au(PQ)PF(6) and Au(QPQ)PF(6) in acidic media is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号