首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper the post-critical behavior of beam columns with variable mass and stiffness properties subjected to follower forces arbitrarily distributed along their length in the presence of damping (both internal and external) is investigated using a complete nonlinear dynamic analysis. Although the static nonlinear analysis is more economical in computational cost, it is associated only with the loss of local stability via flutter or divergence. Thus, the nonlinear dynamic analysis is adopted in order to examine the global stability of the system. The governing equations of hyperbolic type are derived in terms of the displacements by considering (a) nonlinear response including the axial deformation, (b) nonlinear response excluding the axial deformation and (c) linear response. Moreover, as the cross-sectional properties of the beam vary along its axis, the resulting coupled nonlinear differential equations have variable coefficients. Their solution is achieved using the analog equation method (AEM) of Katsikadelis. Besides its accuracy and effectiveness, this method overcomes the shortcoming of a possible FEM solution which may experience a lack of convergence. The problems treated in this investigation include beam columns with various load distributions, such as constant, linear and parabolic. Some of the conclusions detected in studying the nonlinear dynamic stability of Beck’s column with variable cross section (Katsikadelis and Tsiatas, Nonlinear dynamic stability of damped Beck’s column with variable cross section. Int. J. Non-linear Mech. 42, 164–171, 2007), are also valid for the case of distributed loads. The important, however, finding is that the post-critical response under distributed loads depends on the law of distribution of mass and stiffness properties, which may lead also to explosive flutter (unbounded amplitude), in contrast to Beck’s column (end-tip load) where the motion is always bounded.  相似文献   

2.
In this study, the non-linear buckling behavior of truncated conical shells made of functionally graded materials (FGMs), subject to a uniform axial compressive load, has been investigated using the large deformation theory with von the Karman-Donnell-type of kinematic non-linearity. The material properties of functionally graded shells are assumed to vary continuously through the thickness of the shell. The variation of properties followed an arbitrary distribution in terms of the volume fractions of the constituents. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of functionally graded truncated conical shells are obtained and are solved by superposition and Galerkin methods and the upper and lower critical axial loads have been found analytically. Finally, the influences of the compositional profile variations and the variation of the shell geometry on the upper and lower critical axial loads are investigated. Comparing the results of this study with those in the literature validates the present analysis.  相似文献   

3.
Based on Timoshenko-Mindlin kinematic hypotheses and Hamilton'sprinciple,a dynamic non-linear theory for general laminated circular cylindrical shellswith transverse shear deformation is developed.A multi-mode solution for periodic in-plane loads is formulated for the non-linear dynamic stability of an anti-symmetricangle-ply cylinder with its ends elastically restrained against rotation.The resultedequations in terms of time function are solved by the incremental harmonic balancemethod.  相似文献   

4.
IntroductionThestraightcolumnisakindofstructuralcomponentsoftenusedinenginering,itsdynamicbucklinghasbenpaidmuchatentiontofor...  相似文献   

5.
The non-linear large deflection-small strain analysis and post-buckling behavior of an out-of-plumb Timoshenko beam-column of symmetrical cross section subjected to end loads (forces and moments) with non-linear bending connections at both ends, and its top end partially restrained against transverse and longitudinal translations are developed in a classical manner. A set of non-linear equations based on the “modified shear equation” that includes the effects of (1) shear deformation and the shear component of the applied axial forces; and (2) shortening of the beam-column due to both axial forces and “bowing” are presented. The proposed method and corresponding equations can be used in the large deflection-small strain analysis of Timoshenko beam-columns with non-linear bending connections, as well as lateral and longitudinal non-linear restraints at the top end. This paper is an extension of previous work presented by the senior author on the large deflection and post-buckling behavior of Timoshenko beam-columns with linear elastic semi-rigid connections and linear elastic lateral bracing. Three comprehensive examples are included that show the effectiveness of the proposed method and corresponding equations. Results obtained in the three examples are verified against analytical solutions available in the technical literature and against results from models using the FEM program ABAQUS.  相似文献   

6.
7.
In this paper the non-linear analysis of a composite Timoshenko beam with arbitrary variable cross section undergoing moderate large deflections under general boundary conditions is presented employing the analog equation method (AEM), a BEM-based method. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. The beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, the axial displacement and to two stress functions and solved using the AEM. Application of the boundary element technique yields a system of non-linear equations from which the transverse and axial displacements are computed by an iterative process. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. Numerical examples are worked out to illustrate the efficiency, the accuracy, the range of applications of the developed method and the influence of the shear deformation effect.  相似文献   

8.
轴向压应力波下圆柱壳弹性动力失稳的判据与机理   总被引:17,自引:2,他引:17  
基于动力失稳瞬间能量的转换和守恒,推导提出了受轴向力圆柱壳弹性动力失稳的判据和两个临界条件,由第一个临界条件导出的圆柱壳弹性动力失稳的控制方程、边界条件、屈曲变形连续与利用Hamilton原理的结果完全相同,但不足以确定包含在本问题中的两个特定特征参数(临界载荷参数和动力特征参数),由第二个临界条件导出压缩波前的屈曲变形约束方程,基于控制方程有满足边界条件、变形连续条件和波前约束方程的非平凡解的条件,导出关于两个特征参数的一对特征方程,基于特征方程的解,精确地计算出临界载荷参数和动力特征参数的值以及动力失稳态态,由此建立了轴向力作用下圆桩壳弹性动力失稳的特征值分析方法。  相似文献   

9.
The non-linear response of a column with a follower force (Beck's column) subjected to a distributed periodic lateral excitation, or to a support excitation, is determined. An analytical solution for the response amplitude in terms of the loading and system parameters is obtained by a perturbation analysis of the differential equations of motion. Non-linear inertia and non-linear curvature terms are taken into account in the formulation of the differential equations.  相似文献   

10.
弹性压应力波下直杆动力失稳的机理的判据   总被引:16,自引:0,他引:16  
王安稳 《力学学报》2001,33(6):812-820
基于应力波理论和失稳瞬间能量的转换和守恒,导出了一个直杆动力分岔失稳的准则:(1)直杆在发生分岔失稳的瞬间所释放出的压缩变形能等于屈曲所需变形能与屈曲动能之和;(2)在上述能量转换过程中,能量对时间的变化率服从守恒定律。应用临界条件(1)推导出的直杆动力失稳的控制方程和杆端边界条件以及连续条件,与应用哈密顿原理推导的结果完全相同,但不足以构成求解直杆动力失稳问题的完备定解条件,导出包含两个特征参数的一对特征方程。从而建立了求解直杆动力失稳模态和两个特征参数(临界力参数和失稳惯性项指数参数即动力特征参数)的较严密理论方法。  相似文献   

11.
The subject of this investigation is to study the buckling of orthotropic cylindricalthin shells under torsion,which is a power function of time.The dynamic stability and compati-bility equations are obtained first.These equations are subsequently reduced to a time dependentdifferential equation with variable coefficient by using Galerkin's method.Finally,the critical dy-namic and static loading,the corresponding wave numbers,the dynamic factors,critical time andcritical impulse are found analytically by applying the Ritz type variational method.Using thoseresults,the effects of the variations of the power of time in the torsion load expression,of theloading parameter,the ratio of the Young's moduli and the ratio of the radius to thickness onthe critical parameters are studied numerically.It is observed that these factors have appreciableeffects on the critical parameters of the problem in the heading.  相似文献   

12.
Aerospace structures with large aspect ratio, such as airplane wings, rotorcraft blades, wind turbine blades, and jet engine fan and compressor blades, are particularly susceptible to aeroelastic phenomena. Finite element analysis provides an effective and generalized method to model these structures; however, it is computationally expensive. Fortunately, the large aspect ratio of these structures is exploitable as these potential aeroelastically unstable structures can be modeled as cantilevered beams, drastically reducing computational time.In this paper, the non-linear equations of motion are derived for an inextensional, non-uniform cantilevered beam with a straight elastic axis. Along the elastic axis, the cross-sectional center of mass can be offset in both dimensions, and the principal bending and centroidal axes can each be rotated uniquely. The Galerkin method is used, permitting arbitrary and abrupt variations along the length that require no knowledge of the spatial derivatives of the beam properties. Additionally, these equations consistently retain all third-order non-linearities that account for flexural-flexural-torsional coupling and extend the validity of the equations for large deformations.Furthermore, linearly independent shape functions are substituted into these equations, providing an efficient method to determine the natural frequencies and mode shapes of the beam and to solve for time-varying deformation.This method is validated using finite element analysis and is extended to swept wings. Finally, the importance of retaining cubic terms, in addition to quadratic terms, for non-linear analysis is demonstrated for several examples.  相似文献   

13.
In the present investigation on the dynamic plastic buckling of cylindrical shells under axial compression waves, the critical axial stress and the exponential parameter of inertia terms in stability equations are treated as a couple of characteristic parameters. The criterion of transformation and conservation of energy in the process of buckling initiation is used to derive the supplementary restraint equation of buckling deformation at the fronts of axial elastic and plastic compression waves. The supplementary restraint equation, stability equations, boundary conditions and continuity conditions constitute the necessary and sufficient conditions of determining the two characteristic parameters. Two characteristic equations are derived for the two characteristic parameters. The critical axial stress or the critical buckling time, the exponential parameter of inertia terms and the initial modes of buckling deformation are calculated quantitatively from the solution of the characteristic equations.  相似文献   

14.
This paper discusses the derivation of discrete low-dimensional models for the non-linear vibration analysis of thin shells. In order to understand the peculiarities inherent to this class of structural problems, the non-linear vibrations and dynamic stability of a circular cylindrical shell subjected to dynamic axial loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly non-linear behavior under both static and dynamic axial loads. Geometric non-linearities due to finite-amplitude shell motions are considered by using Donnell’s nonlinear shallow shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the non-linear vibration modes and the discretized equations of motion are obtained by the Galerkin method. The responses of several low-dimensional models are compared. These are used to study the influence of the modelling on the convergence of critical loads, bifurcation diagrams, attractors and large amplitude responses of the shell. It is shown that rather low-dimensional and properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.  相似文献   

15.
This paper deals with the analysis of stability of a hinged-hinged viscoelastic column subjected to a non-zero mean stochastic axial force. The randomly variable part of this is described by a stationary Gaussian white noise process. The viscosity affects the curvature of the column, for which the classic Euler-Bernoulli's model is adopted. The viscosity is described by the linear Kelvin-Voigt's model. A dynamic stability analysis is performed. Normal modes are introduced in the integro-differential equation of motion so that uncoupled modal equations are retrieved. With reference to the first mode, by using an additional state variable, three Itô’s ODE are obtained, from which the differential equations ruling the response statistical moment evolution are written by means of Itô’s differential rule. The zero solution, that is undeformed straight column, corresponds to zero moments. If the column is perturbed, it is stable when the response moments tend to zero. A necessary and sufficient condition of stability in the moments of order r is that the matrix Ar of the coefficients of the ODE system ruling them has negative real eigenvalues and complex eigenvalues with negative real parts. Because of the linearity of the system the stability of the first two moments is the strongest condition of stability. If the mean axial force μP or the white noise intensity wP are increased, there exist critical values μPcr, wPcr for which almost an eigenvalue is positive. The critical mean axial force is found to be inversely proportional to the parameter φ, which measures the amount of viscous deformation. The search for the critical values of wP is made numerically, and several graphs are presented for a representative column.  相似文献   

16.
This paper deals with an analytical approach of the buckling behavior of a functionally graded circular cylindrical shell under axial pressure with external axial and circumferential stiffeners. The shell properties are assumed to vary continuously through the thickness direction. Fundamental relations and equilibrium and stability equations are derived using the third-order shear deformation theory. The resulting equations are employed to obtain the closed-form solution for the critical buckling loads. A simply supported boundary condition is considered for both edges of the shell. The comparison of the results of this study with those in the literature validates the present analysis. The effects of material composition (volume fraction exponent), of the number of stiffeners and of shell geometry parameters on the characteristics of the critical buckling load are described. The analytical results are compared and validated using the finite-element method. The results show that the inhomogeneity parameter, the geometry of the shell and the number of stiffeners considerably affect the critical buckling loads.  相似文献   

17.
The extensive use of circular cylindrical shells in modern industrial applications has made their analysis an important research area in applied mechanics. In spite of a large number of papers on cylindrical shells, just a small number of these works is related to the analysis of orthotropic shells. However several modern and natural materials display orthotropic properties and also densely stiffened cylindrical shells can be treated as equivalent uniform orthotropic shells. In this work, the influence of both material properties and geometry on the non-linear vibrations and dynamic instability of an empty simply supported orthotropic circular cylindrical shell subjected to lateral time-dependent load is studied. Donnell׳s non-linear shallow shell theory is used to model the shell and a modal solution with six degrees of freedom is used to describe the lateral displacements of the shell. The Galerkin method is applied to derive the set of coupled non-linear ordinary differential equations of motion which are, in turn, solved by the Runge–Kutta method. The obtained results show that the material properties and geometric relations have a significant influence on the instability loads and resonance curves of the orthotropic shell.  相似文献   

18.
对曲边柱壳受轴向非均匀内压作用下的大转动几何非线性3-D动力学行为进行了研究.基于Nayfeh and Pai[1]非线性壳体理论,给出了考虑几何非线性的3-D混合型(含内力与位移)动力学模型.为了克服该强非线性模型难以求解的问题,依据分析获得的结构静动态变形关系,采用Lagrange方程推导建立了基于结构静态解的曲边柱壳多自由度3-D动力学方程,并对其进行了线性化与降阶处理,结合差分法获得了一套高效的求解算法.与LS-DYNA有限元结果的吻合,验证了本文方法的正确性.最后分析了单元数和计算时间步分别对有限元模型和本文方法的影响,发现求解精度随着计算时间步的减小不断提高直至趋于稳定.同时对采用本文方法获得的曲边柱壳动态变形模式的分析表明:结构动态响应与其所受内压载荷沿轴向的分布形式关系紧密,可以通过改变或者设计内压轴向分布形式来影响以及控制结构的动态变形模式,从而应用于曲边柱壳结构设计及优化的工程实际中.  相似文献   

19.
The numerical structural analysis schemes are extensively developed by progress of modern computer processing power. One of these approximate approaches is called "dynamic relaxation (DR) method." This technique explicitly solves the simultaneous system of equations. For analyzing the static structures, the DR strategy transfers the governing equations to the dynamic space. By adding the fictitious damping and mass to the static equilibrium equations, the corresponding artificial dynamic system is achieved. The static equilibrium path is required in order to investigate the structural stability behavior. This path shows the relationship between the loads and the displacements. In this way, the critical points and buckling loads of the non-linear structures can be obtained. The corresponding load to the first limit point is known as buckling limit load. For estimating the buckling load, the variable load factor is used in the DR process. A new procedure for finding the load factor is presented by imposing the work increment of the external forces to zero. The proposed formula only requires the fictitious parameters of the DR scheme. To prove the efficiency and robustness of the suggested algorithm, various geometric non-linear analyses are performed. The obtained results demonstrate that the new method can successfully estimate the buckling limit load of structures.  相似文献   

20.
By taking into account the effect of the bi-modulus for tension and compression of the fiber reinforced polymer (FRP) sheet in the reinforcement layer, a general mathematical model for the nonlinear bending of a slender timber beam strengthened with the FRP sheet is established under the hypothesis of the large deflection deformation of the beam. Nonlinear governing equations of the second order effect of the beam bending are derived. The nonlinear stability of a simply-supported slender timber column strengthened with the FRP sheet is then investigated. An expression of the critical load of the simply-supported FRP-strengthened timber beam is obtained. The existence of postbuckling solution of the timber column is proved theoretically, and an asymptotic analytical solution of the postbuckling state in the vicinity of the critical load is obtained using the perturbation method. Parameters are studied showing that the FRP reinforcement layer has great influence on the critical load of the timber column, and has little influence on the dimensionless postbuckling state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号