首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The propagation of non-linear deformation waves in a dissipativc medium is described by a unified asymptotic theory, making use of wave front kinematics and the concepts of progressive waves. The mathematical models are derived from the theories of thermoclasticity or viscoclasticity taking into account the geometric and physical non-linearities and dispersion. On the basis of eikonal equations for the associated linear problem the transport equations of the nth order are obtained. In the multidimensional case the method of matched separation of initial equations is proposed. The interaction problems which occur in head-on collisions and in reflection from boundaries or interfaces are analyzed. Conditions are also studied when the interaction of non-linear waves does not take place. The inverse problem of determining materials properties according to pulse shape changes is discussed.  相似文献   

2.
Using the weakly non-linear geometrical acoustics theory, we obtain the small amplitude high frequency asymptotic solution to the basic equations in Eulerian coordinates governing one dimensional unsteady planar, spherically and cylindrically symmetric flow in a reactive hydrodynamic medium. We derive the transport equations for the amplitudes of resonantly interacting waves. The evolutionary behavior of non-resonant wave modes culminating into shock waves is also studied.   相似文献   

3.
This paper presents a thorough and comprehensive investigation of non-linear buckling and postbuckling analyses of pin-ended shallow circular arches subjected to a uniform radial load and which have equal elastic rotational end-restraints. The differential equations of equilibrium for non-linear buckling and postbuckling are established based on a virtual work approach. Exact solutions for the non-linear bifurcation, limit point and lowest buckling loads are obtained; in particular, exact solutions for the non-linear postbuckling equilibrium paths are derived. The criteria for switching between fundamental buckling and postbuckling modes are developed in terms of critical values of a geometric parameter for an arch, with exact solutions for these critical values of geometric parameter being obtained. Analytical solutions of non-linear buckling and postbuckling problems for arches with rotational end-restraints are of great interest, since they constitute one of the very few closed-form analyses of buckling and postbuckling behaviour of continuous structural systems. These exact solutions are a contribution to the non-linear structural mechanics of arches, as well as providing useful benchmark solutions for verifying non-linear numerical analyses.  相似文献   

4.
Non-linear interactions in a hinged-hinged uniform moderately curved beam with a torsional spring at one end are investigated. The two-mode interaction is a one-to-one autoparametric resonance activated in the vicinity of veering of the frequencies of the lowest two modes and results from the non-linear stretching of the beam centerline. The excitation is a base acceleration that is involved in a primary resonance with either the first mode only or with both modes. The ensuing non-linear responses and their stability are studied by computing force- and frequency-response curves via bifurcation analysis tools. Both the sensitivity of the internal resonance detuning—the gap between the veering frequencies—and the linear modal structure are investigated by varying the rise of the beam half-sinusoidal rest configuration and the torsional spring constant. The internal and external resonance detunings are varied accordingly to construct the non-linear system response curves. The beam mixed-mode response is shown to undergo several bifurcations, including Hopf and homoclinic bifurcations, along with the phenomenon of frequency island generation and mode localization.  相似文献   

5.
Here, the large amplitude free flexural vibration behaviors of thin laminated composite skew plates are investigated using finite element approach. The formulation includes the effects of shear deformation, in-plane and rotary inertia. The geometric non-linearity based on von Karman's assumptions is introduced. The non-linear governing equations obtained employing Lagrange's equations of motion are solved using the direct iteration technique. The variation of non-linear frequency ratios with amplitudes is brought out considering different parameters such as skew angle, number of layers, fiber orientation, boundary condition and aspect ratio. The influence of higher vibration modes on the non-linear dynamic behavior of laminated skew plates is also highlighted. The present study reveals the redistribution of vibrating mode shape at certain amplitude of vibration depending on geometric and lamination parameters of the plate. Also, the degree of hardening behavior increases with the skew angle and its rate of change depends on the level of amplitude of vibration.  相似文献   

6.
The free non-linear vibration of a rotating beam has been considered in this paper. The von Karman strain-displacement relations are implemented. Non-linear equations of motion are obtained by Hamilton’s principle. Results are obtained by applying the method of multiple scales to a set of discretized ordinary differential equations which obtained by using the Galerkin discretization method. This set contains coupling between transverse and axial displacements as quadratic and cubic geometric non-linearities. Non-linear normal modes and non-linear natural frequencies with or without internal resonance are observed. In the internal resonance case, the internal resonance between two transverse modes and between one transverse and one axial mode are explored. Obtained results in this study are compared with those obtained from literature. The stability and some dynamic characteristics of the non-linear normal modes such as the phase portrait, Poincare section and power spectrum diagrams have been inspected. It is shown that, for the first internal resonance case, the beam has one stable or degenerate uncoupled mode and either: (a) one stable coupled mode, (b) one unstable coupled mode, (c) two stable and one unstable coupled modes, (d) three stable coupled modes, and (e) one stable coupled mode. On the other hand, for the second internal resonance case, the beam has one stable or unstable or degenerate uncoupled mode and either: (a) two stable coupled modes, (b) two unstable coupled modes, and (c) one stable coupled mode depending on the parameters.  相似文献   

7.
A second order asymptotic solution to the Donnell type non-linear equations of elastic homogeneous conical shells is presented. Closed form solutions for the displacements and stress resultants including twelve constants of integration are obtained by considering the lateral displacement to be of the order of kt where k is a geometric parameter and t is the shell thickness. Terms of order up tot/r in comparison to unity are omitted. The solutions are valid for asymmetric slowly varying edge or surface loads.  相似文献   

8.
Resonant multi-modal dynamics due to planar 2:1 internal resonances in the non-linear, finite-amplitude, free vibrations of horizontal/inclined cables are parametrically investigated based on the second-order multiple scales solution in Part I [1] (in press). The already validated kinematically non-condensed cable model accounts for the effects of both non-linear dynamic extensibility and system asymmetry due to inclined sagged configurations. Actual activation of 2:1 resonances is discussed, enlightening on a remarkable qualitative difference of horizontal/inclined cables as regards non-linear orthogonality properties of normal modes. Based on the analysis of modal contribution and solution convergence of various resonant cables, hints are obtained on proper reduced-order model selections from the asymptotic solution accounting for higher-order effects of quadratic nonlinearities. The dependence of resonant dynamics on coupled vibration amplitudes, and the significant effects of cable sag, inclination and extensibility on system non-linear behavior are highlighted, along with meaningful contributions of longitudinal dynamics. The spatio-temporal variation of non-linear dynamic configurations and dynamic tensions associated with 2:1 resonant non-linear normal modes is illustrated. Overall, the analytical predictions are validated by finite difference-based numerical investigations of the original partial-differential equations of motion.  相似文献   

9.
The fundamental and subharmonic resonances of a nonlinear cyclic assembly are examined using the asymptotic method of multiple-scales. The system consists of a number of identical cantilever beams coupled by means of weak linear stiffnesses. Assuming beam inextensionality, geometric nonlinearities arise due to longitudinal inertia and the nonlinear relation between beam curvature and transverse displacement. The governing nonlinear partial differential equations are discretized by a Galerkin procedure and the resulting set of coupled ordinary differential equations is solved using an asymptotic analysis. The unforced assembly is known to possess localized nonlinear normal modes, which give rise to a very complicated topological structure of fundamental and subharmonic response curves. In contrast to the linear system which exhibits as many forced resonances as its number of degrees of freedom, the nonlinear system is found to possess a number of additional resonance branches which have no counterparts in linear theory. Some of the additional resonances are spatially localized, corresponding to motions of only a small subset of periodic elements. The analytical results are verified by numerical Poincaré maps, and the forced localization features of the nonlinear assembly are demonstrated by considering its response to impulsive excitations.  相似文献   

10.
The non-linear non-planar steady-state responses of a near-square cantilevered beam (a special case of inextensional beams) with general imperfection under harmonic base excitation is investigated. By applying the combination of the multiple scales method and the Galerkin procedure to two non-linear integro-differential equations derived in part I, two modulation non-linear coupled first-order differential equations are obtained for the case of a primary resonance with a one-to-one internal resonance. The modulation equations contain linear imperfection-induced terms in addition to cubic geometric and inertial terms. Variations of the steady-state response amplitude curves with different parameters are presented. Bifurcation analyses of fixed points show that the influence of geometric imperfection on the steady-state responses can be significant to a great extent although the imperfection is small. The phenomenon of frequency island generation is also observed.  相似文献   

11.
The non-linear vibration of simply supported, circular cylindrical shells is analysed. Geometric non-linearities due to finite-amplitude shell motion are considered by using Donnell's non-linear shallow-shell theory; the effect of viscous structural damping is taken into account. A discretization method based on a series expansion of an unlimited number of linear modes, including axisymmetric and asymmetric modes, following the Galerkin procedure, is developed. Both driven and companion modes are included, allowing for travelling-wave response of the shell. Axisymmetric modes are included because they are essential in simulating the inward mean deflection of the oscillation with respect to the equilibrium position. The fundamental role of the axisymmetric modes is confirmed and the role of higher order asymmetric modes is clarified in order to obtain the correct character of the circular cylindrical shell non-linearity. The effect of the geometric shell characteristics, i.e., radius, length and thickness, on the non-linear behaviour is analysed: very short or thick shells display a hardening non-linearity; conversely, a softening type non-linearity is found in a wide range of shell geometries.  相似文献   

12.
A numerical method, based on the invariant manifold approach, is presented for constructing non-linear normal modes for systems with internal resonances. In order to parameterize the non-linear normal modes of interest, multiple pairs of system state variables involved in the internal resonance are kept as ‘seeds’ for the construction of the multi-mode invariant manifold. All the remaining degrees of freedom are then constrained to these ‘seed’, or master, variables, resulting in a system of non-linear partial differential equations that govern the constraint relationships, and these are solved numerically. The computationally-intensive solution procedure uses a combination of finite difference schemes and Galerkin-based expansion approaches. It is illustrated using two examples, both of which focus on the construction of two-mode models. The first example is based on the analysis of a simple three-degree-of-freedom example system, and is used to demonstrate the approach. An invariant manifold that captures two non-linear normal modes is constructed, resulting in a reduced order model that accurately captures the system dynamics. The methodology is then applied to a larger order system, specifically, an 18-degree-of-freedom rotating beam model that features a three-to-one internal resonance between the first two flapping modes. The accuracy of the non-linear two-mode reduced order model is verified by comparing time-domain simulations of the two DOF model and the full system equations of motion.  相似文献   

13.
A “two time scale” asymptotic expansion procedure describing the modulation of a propagating simple wave governed by a system of non-linear partial differential equations is applied to the deflection waves of non-linear elastic strings. Rapid deflection signals propagating into a general slowly varying disturbance are modulated. In addition, they themselves affect the equations for that disturbance. The two effects are separated naturally when, to prevent the cumulative growth inherent in most “high frequency” procedures, an averaging technique is introduced. The interaction of two deflection waves is given as a specific example.  相似文献   

14.
Theoretical and experimental non-linear vibrations of thin rectangular plates and curved panels subjected to out-of-plane harmonic excitation are investigated. Experiments have been performed on isotropic and laminated sandwich plates and panels with supported and free boundary conditions. A sophisticated measuring technique has been developed to characterize the non-linear behavior experimentally by using a Laser Doppler Vibrometer and a stepped-sine testing procedure. The theoretical approach is based on Donnell's non-linear shell theory (since the tested plates are very thin) but retaining in-plane inertia, taking into account the effect of geometric imperfections. A unified energy approach has been utilized to obtain the discretized non-linear equations of motion by using the linear natural modes of vibration. Moreover, a pseudo arc-length continuation and collocation scheme has been used to obtain the periodic solutions and perform bifurcation analysis. Comparisons between numerical simulations and the experiments show good qualitative and quantitative agreement. It is found that, in order to simulate large-amplitude vibrations, a damping value much larger than the linear modal damping should be considered. This indicates a very large and non-linear increase of damping with the increase of the excitation and vibration amplitude for plates and curved panels with different shape, boundary conditions and materials.  相似文献   

15.
Approximations of the resonant non-linear normal modes of a general class of weakly non-linear one-dimensional continuous systems with quadratic and cubic geometric non-linearities are constructed for the cases of two-to-one, one-to-one, and three-to-one internal resonances. Two analytical approaches are employed: the full-basis Galerkin discretization approach and the direct treatment, both based on use of the method of multiple scales as reduction technique. The procedures yield the uniform expansions of the displacement field and the normal forms governing the slow modulations of the amplitudes and phases of the modes. The non-linear interaction coefficients appearing in the normal forms are obtained in the form of infinite series with the discretization approach or as modal projections of second-order spatial functions with the direct approach. A systematic discussion on the existence and stability of coupled/uncoupled non-linear normal modes is presented. Closed-form conditions for non-linear orthogonality of the modes, in a global and local sense, are discussed. A mechanical interpretation of these conditions in terms of virtual works is also provided.  相似文献   

16.
Some recent results on the Lie symmetry generators of equations with a small parameter and the relationship between symmetries and conservation laws for such equations are used to construct first integrals and Lagrangians for autonomous weakly non-linear systems, y″+εF(t)y′+y=f(y,y′). An adaptation of a theorem that provides the point symmetry generators that leave the invariant functional involving a Lagrangian for such equations is presented. A detailed example to illustrate the method is given (and other examples are discussed). The (approximate) symmetry generators, invariants and Lagrangians maintain the perturbation order of the ‘small parameter’ stipulated in the equation — first order in this case.  相似文献   

17.
Non-linear systems are here tackled in a manner directly inherited from linear ones, that is, by using proper normal modes of motion. These are defined in terms of invariant manifolds in the system's phase space, on which the uncoupled system dynamics can be studied. Two different methodologies which were previously developed to derive the non-linear normal modes of continuous systems — one based on a purely continuous approach, and one based on a discretized approach to which the theory developed for discrete systems can be applied-are simultaneously applied to the same study case-an Euler-Bernoulli beam constrained by a non-linear spring-and compared as regards accuracy and reliability. Numerical simulations of pure non-linear modal motions are performed using these approaches, and compared to simulations of equations obtained by a classical projection onto the linear modes. The invariance properties of the non-linear normal modes are demonstrated, and it is also found that, for a pure non-linear modal motion, the invariant manifold approach achieves the same accuracy as that obtained using several linear normal modes, but with significantly reduced computational cost. This is mainly due to the possibility of obtaining high-order accuracy in the dynamics by solving only one non-linear ordinary differential equation.  相似文献   

18.
Multi-frequency vibrations of a system of two isotropic circular plates interconnected by a visco-elastic layer that has non-linear characteristics are considered. The considered physical system should be of interest to many researches from mechanical and civil engineering. The first asymptotic approximation of the solutions describing stationary and no stationary behavior, in the regions around the two coupled resonances, is the principal result of the authors. A series of the amplitude-frequency and phase-frequency curves of the two frequency like vibration regimes are presented. That curves present the evolution of the first asymptotic approximation of solutions for different non-linear harmonics obtained by changing external excitation frequencies through discrete as well as continuous values. System of the partial differential equations of the transversal oscillations of the sandwich double circular plate system with visco-non-linear elastic layer, excited by external, distributed, along plate surfaces, excitation are derived and approximately solved for various initial conditions and external excitation properties. System of differential equations of the first order with respect to the amplitudes and the corresponding number of the phases in the first asymptotic averaged approximation are derived for different corresponding multi-frequency non-linear vibration regimes. These equations are analytically and numerically considered in the light of the stationary and no stationary resonant regimes, as well as the multi-non-linear free and forced mode mutual interactions, number of the resonant jumps.  相似文献   

19.
The present work derives the accurate analytical solutions for large amplitude vibration of thin functionally graded beams. In accordance with the Euler–Bernoulli beam theory and the von Kármán type geometric non-linearity, the second-order ordinary differential equation having odd and even non-linearities can be formulated through Hamilton's principle and Galerkin's procedure. This ordinary differential equation governs the non-linear vibration of functionally graded beams with different boundary constraints. Building on the original non-linear equation, two new non-linear equations with odd non-linearity are to be constructed. Employing a generalised Senator–Bapat perturbation technique as an ingenious tool, two newly formulated non-linear equations can be solved analytically. By selecting the appropriate piecewise approximate solutions from such two new non-linear equations, the analytical approximate solutions of the original non-linear problem are established. The present solutions are directly compared to the exact solutions and the available results in the open literature. Besides, some examples are selected to confirm the accuracy and correctness of the current approach. The effects of boundary conditions and vibration amplitudes on the non-linear frequencies are also discussed.  相似文献   

20.
We study the resonant dynamics of a two-degree-of-freedom system composed of a linear oscillator weakly coupled to a strongly non-linear one, with an essential (non-linearizable) cubic stiffness non-linearity. For the undamped system this leads to a series of internal resonances, depending on the level of (conserved) total energy of oscillation. We study in detail the 1:1 internal resonance, and show that the undamped system possesses stable and unstable synchronous periodic motions (non-linear normal modes—NNMs), as well as, asynchronous periodic motions (elliptic orbits—EOs). Furthermore, we show that when damping is introduced certain NNMs produce resonance capture phenomena, where a trajectory of the damped dynamics gets ‘captured’ in the neighborhood of a damped NNM before ‘escaping’ and becoming an oscillation with exponentially decaying amplitude. In turn, these resonance captures may lead to passive non-linear energy pumping phenomena from the linear to the non-linear oscillator. Thus, sustained resonance capture appears to provide a dynamical mechanism for passively transferring energy from one part of the system to another, in a one-way, irreversible fashion. Numerical integrations confirm the analytical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号