首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical model has been developed for computing embedded subsonic flow in rocket plumes from underexpanded axisymmetric supersonic nozzles. Numerical procedures based on the analysis have been incorporated in a simplified, non-reacting exhaust structure program and calculations for representative plume conditions performed. The technique is numerically stable and has provided satisfactory predictions of Mach–disc associated embedded subsonic flow.  相似文献   

2.
In this brief communication, Melnikov's method is adopted to study the chaotic behaviors of a two-dimensional thin panel subjected to subsonic flow and external excitation. The nonlinear governing equations of the subsonic panel system are reduced to a series of ordinary differential equations by using Galerkin method. The critical parameters for chaos are obtained. It is found that the critical parameters obtained by the theoretical analysis are in agreement with the numerical simulations. The method suggested in this paper can also be extended for other fluid-structure dynamic systems, such as the fluid-conveying system.  相似文献   

3.
In this research, the effect of flow regime change from subsonic to transonic on the air loads of a pitching NACA0012 airfoil is investigated. To do this, the effect of change in flow regime on the lift and pitching moment coefficients hysteresis cycles is studied. The harmonic balance approach is utilized for numerical calculation due to its low computational time. Verifications are also made with previous works and good agreements are observed. The assessment of flow regime change on the aforementioned hysteresis cycles is accomplished in the Mach number range of M=0.65–0.755. The reduced frequency and pitch amplitude also vary from k=0.03 to 0.1 and α0=1–2.51°, respectively. Results show that the effect of increase in Mach number is to increase and decrease the lift coefficient during downstroke and upstroke, respectively, whereas at low reduced frequencies, the effect of increase in Mach number may lead to a reverse manner when airfoil moves toward its extremum angle of attack. Results also reveal that as the pitch amplitude varies, the shape of lift coefficient hysteresis cycle depends more on the pitch amplitude than on the appearance of shock. It is shown that as the Mach number increases, the incidence angles correspond to the extremum pitching moment, and depending on the reduced frequency, lie between zero and extremum angle of attack. These incidence angles shift toward the extremum angle of attack as the reduced frequency decreases. Results also show that the increase in pitch amplitude at low Mach number, in such a way that leads to the formation of shock around the extremum angle of attack, causes the extremum pitching moment to appear around these angles and at high Mach number, depending on the reduced frequency, the extremum pitching moment incidence angles would be between zero and extremum incidence angle.  相似文献   

4.
Landing gear doors on aircraft have experienced flutter during preliminary flight testing. While designs vary widely, landing gear doors are typically plate-like structures with a relatively rigid actuator attached to their inside surface. To better understand the aeroelasticity of landing gear doors, this study investigates the aeroelastic stability of an idealized model. The model consists of a hinged plate with an interior constraint approximating the actuator attachment. The plate is subject to uniform flow, and an unsteady vortex lattice model is coupled to the structural model to predict critical flow velocities. The location and footprint area of the internal constraint, along with plate aspect and mass ratios, are varied to investigate a large parameter space. Results reveal that the critical flow speed and instability mechanism are sensitive to the postulated actuator placement. In general, flutter is the dominant mode of instability when the actuator is postulated in the leading quarter of the plate. In other postulated locations, divergence dominates. However, the exact shape and location of the boundary between flutter and divergence is configuration dependent and found to be especially sensitive to changes in aspect ratio.  相似文献   

5.
An inclined, gravity driven, open membrane trough is used as a low-cost fluid transport conduit. The membrane shape and the fluid velocity are determined numerically. The optimum opening width for maximum flow is found to be 0.651 of the membrane perimeter.  相似文献   

6.
The results of calculating the stability of a three-dimensional swirl flow of a viscous heat-conducting gas are presented. The stability characteristics are determined using the linear time-dependent theory of plane-parallel flow stability. The main undisturbed axisymmetric vortex flow was determined numerically using a quasi-cylindrical approximation for the complete set of Navier-Stokes equations. The circulation of the peripheral velocity in the cocurrent flow surrounding the viscous vortex core was assumed to be constant. In analyzing the stability, nonaxisymmetric perturbations in the shape of waves traveling along the vortex axis with both positive and negative wavenumbers were considered; in these two cases the perturbation rotation is either the same or opposite in sense to the rotation in the vortex core. Neutral stability curves are determined for various values of the swirling parameter and the cocurrent flow Mach number. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 50–59, May–June, 1998.  相似文献   

7.
A hybrid of computational and theoretical methods is extended and used to investigate the instabilities of a flexible surface inserted into one wall of an otherwise rigid channel conveying an inviscid flow. The computational aspects of the modelling combine finite-difference and boundary-element methods for structural and fluid elements respectively. The resulting equations are coupled in state-space form to yield an eigenvalue problem for the fluid–structure system. In tandem, the governing equations are solved to yield an analytical solution applicable to inserts of infinite length as an approximation for modes of deformation that are very much shorter than the overall length of the insert. A comprehensive investigation of different types of inserts – elastic plate, damped flexible plate, tensioned membrane and spring-backed flexible plate – is conducted and the effect of the proximity of the upper channel wall on stability characteristics is quantified. Results show that the presence of the upper-channel wall does not significantly modify the solution morphology that characterises the corresponding open-flow configuration, i.e. in the absence of the rigid upper channel wall. However, decreasing the channel height is shown to have a very significant effect on instability-onset flow speeds and flutter frequencies, both of which are reduced. The channel height above which channel-confinement effects are negligible is shown to be of the order of the wavelength of the critical mode at instability onset. For spring-backed flexible plates the wavelength of the critical mode is much shorter than the insert length and we show very good agreement between the predictions of the analytical and the state-space solutions developed in this paper. The small discrepancies that do exist are shown to be caused by an amplitude modulation of the critical mode on an insert of finite length that is unaccounted for in the travelling-wave assumption of the analytical model. Overall, the key contribution of this paper is the quantification of the stability bounds of a fundamental fluid–structure interaction (FSI) system which has hitherto remained largely unexplored.  相似文献   

8.
In this work we propose an effective viscosity criterion for the stabilization of annular gas-liquid and liquid-particle flows and an inertial mechanism which drives waves into slugs in slugging gas-liquid flows. Annular flow is stable when the fluid having the higher effective viscosity occupies the core region and the lower viscosity fluid is in the annulus. The eddy viscosity criterion is shown to be very consistent with published work on annular flow transitions in horizontal and vertical gas-liquid flows. It also applies to a variety of liquid-solid and gas-solid flows. In the second part of the paper we propose a mechanism for explaining the growth of initially small waves and initiation of slugs in gas-liquid flow.  相似文献   

9.
Stability analysis in spatial mode for channel flow of fiber suspensions   总被引:1,自引:0,他引:1  
Different from previous temporal evolution assumption, the spatially growing mode was employed to analyze the linear stability for the channel flow of fiber suspensions. The stability equation applicable to fiber suspensions was established and solutions for a wide range of Reynolds number and angular frequency were given numerically . The results show that, the flow instability is governed by a parameter H which represents a ratio between the axial stretching resistance of fiber and the inertial force of the fluid. An increase of H leads to a raise of the critical Reynolds number, a decrease of corresponding wave number, a slowdown of the decreasing of phase velocity , a growth of the spatial attenuation rate and a diminishment of the peak value of disturbance velocity. Although the unstable region is reduced on the whole, long wave disturbances are susceptible to fibers.  相似文献   

10.
Limit cycle oscillations of two-dimensional panels in low subsonic flow   总被引:1,自引:0,他引:1  
Limit cycle oscillations of a two-dimensional panel in low subsonic flow have been studied theoretically and experimentally. The panel is clamped at its leading edge and free at its trailing edge. A structural non-linearity arises in both the bending stiffness and the mass inertia. Two-dimensional incompressible (linear) vortex lattice aerodynamic theory and a corresponding reduced order aerodynamic model were used to calculate the linear flutter boundary and also the limit cycle oscillations (that occur beyond the linear flutter boundary).  相似文献   

11.
A method of mathematical modeling of the tonal sound induced by the unsteady aerodynamic interaction of two plane airfoil cascades in a subsonic flow and in uniform relative motion in the direction of their fronts is developed. The method is based on the numerical integration of the unsteady flow equations using a simplified model for the periodic system of edge wakes shed from the airfoils of the first (leading) cascade in the viscous flow and acting on the second (trailing) cascade. An analysis of the distinctive features of the flow under consideration demonstrates the efficiency of the model proposed.  相似文献   

12.
In the generation of discrete tones by subsonic impinging jets, there exists a difference of opinion as how the feedback is achieved, i.e., the path of the feedback acoustic waves is whether inside the jet or outside the jet? The only available model (Tam and Ahuja model) for the prediction of an average subsonic jet impingement tone frequency assumes that the upstream part of the feedback loop is closed by an upstream propagating neutral wave of the jet. But, there is no information about the plate geometry in the model. The present study aims at understanding the effect of the plate geometry (size and co-axial hole in the plate) on the self-excitation process of subsonic impinging jets and the path of the acoustic feedback to the nozzle exit. The present results show that there is no effect of plate diameter on the frequency of the self-excitation. A new type of tones is generated for plates with co-axial hole (hole diameter is equal to nozzle exit diameter) for Mach numbers 0.9 and 0.95, in addition to the axisymmetric and helical mode tones observed for plates without co-axial hole. The stability results show that the Strouhal number of the least dispersive upstream propagating neutral waves match with the average Strouhal number of the new tones observed in the present experiments. The present study extends the validity of the model of Tam and Ahuja to a plate with co-axial hole (annular plate) and by doing so, we indirectly confirmed that the major acoustic feedback path to the nozzle exit is inside the jet.  相似文献   

13.
Low Reynolds number flow of Newtonian and viscoelastic Boger fluids past periodic square arrays of cylinders with a porosity of 0.45 and 0.86 has been studied. Pressure drop measurements along the flow direction as a function of flow rate as well as flow visualization has been performed to investigate the effect of fluid elasticity on stability of this class of flows. It has been shown that below a critical Weissenberg number (Wec), the flow in both porosity cells is a two-dimensional steady flow, however, pressure fluctuations appear above Wec which is 2.95±0.25 for the 0.45 porosity cell and 0.95±0.08 for the higher porosity cell. Specifically, in the low porosity cell as the Weissenberg number is increased above Wec a transition between a steady two-dimensional to a transient three-dimensional flow occurs. However, in the high porosity cell a transition between a steady two-dimensional to a steady three-dimensional flow consisting of periodic cellular structures along the length of the cylinder in the space between the first and the second cylinder occurs while past the second cylinder another transition to a transient three-dimensional flow occurs giving rise to time- dependent cellular structures of various wavelengths along the length of the cylinder. Overall, the experiments indicate that viscoelastic flow past periodic arrays of cylinders of various porosities is susceptible to purely elastic instabilities. Moreover, the instability observed in lower porosity cells where a vortex is present between the cylinders in the base flow is amplifieds spatially, that is energy from the mean flow is continuously transferred to the disturbance flow along the flow direction. This instability gives rise to a rapid increase in flow resistance. In higher porosity cells where a vortex between the cylinders is not present in the base flow, the energy associated with the disturbance flow is not greatly changed along the flow direction past the second cylinder. In addition, it has been shown that in both flow cells the instability is a sensitive function of the relaxation time of the fluid. Hence, the instability in this class of flows is a strong function of the base flow kinematics (i.e., curvature of streamlines near solid surfaces), We and the relaxation time of the fluid.  相似文献   

14.
The unsteady aerodynamic thrust and aeroelastic response of a two-dimensional membrane airfoil under prescribed harmonic motion are investigated computationally with a high-order Navier–Stokes solver coupled to a nonlinear membrane structural model. The effects of membrane prestress and elasticity are examined parametrically for selected plunge and pitch–plunge motions at a chord-based Reynolds number of 2500. The importance of inertial membrane loads resulting from the prescribed flapping is also assessed for pure plunging motions. This study compares the period-averaged aerodynamic loads of flexible versus rigid membrane airfoils and highlights the vortex structures and salient fluid–membrane interactions that enable more efficient flapping thrust production in low Reynolds number flows.  相似文献   

15.
Numerical simulations on the post-flutter response of a flexible cantilever plate are carried out by establishing a nonlinear aeroelastic model. The present study shows that chaotic movements may exist in the three-dimensional panel flutter problems in case of low subsonic flows. In the analysis, time traces, phase-plane plots, Poincare maps as well as power spectral densities are employed to identify the dynamic behavior of the system. It is observed that the plate undergoes period-1, period-3 and non-periodic motions with the increase of inflow velocity. The post-flutter behavior is dominated by both geometric and aerodynamic nonlinearities. Numerical results show that wingtip vortexes are in fact an important source of aerodynamic nonlinearities, which have not been fully studied before. The study also provides a criterion on how to choose a coupling strategy in the nonlinear aeroelastic simulation of a low-aspect-ratio flexible structure in low subsonic flows when the dominant nonlinear effect is different in the post-flutter response.  相似文献   

16.
Wrinkling analysis of a rectangular membrane with a single crease under shearing is performed to understand the wrinkle-crease interaction behaviors.The crease is considered by introducing the residual stresses from creasing and the effective modulus into the baseline configuration with assumed circular cross-sectional crease geometry.The wrinkling analysis of the creased membrane is then performed by using the direct perturb-force(DP) simulation technique which is based on our modified displacement components(MDC) method.Results reveal that the crease may influence the stress transfer path in the membrane and further change the wrinkling direction.The crease appears to improve the bending stiffness of the membrane which has an effective resistance on the wrinkling evolution.The effects of the crease orientation on wrinkle-crease interaction are studied toward the end of this paper.The results show that the wrinkling amplitude,wavelength,and direction increase as the crease orientation increases,and the wrinkling number decreases with the increasing crease orientation.These re-sults will be of great benefit to the analysis and the control of the wrinkles in the membrane structures.  相似文献   

17.
18.
A mixed spectral finite element scheme for the implementation of a design method for turbomachinery blading in three-dimensional subcritical compressible flow is presented. The method gives the detailed blade shape that would produce a prescribed tangential mean swirl schedule, given the hub and shroud profiles, the number of blades and their stacking position. After a presentation of the mathematical formulation of the design theory, the current numerical approach is described. It is then applied to the design of blading for radial inflow turbine impellers in three-dimensional flow.  相似文献   

19.
An experimental study of a low aspect ratio rectangular membrane wing in a wind tunnel was conducted for a Reynolds number range of 2.4×104–4.8×104. Time-accurate measurements of membrane deformation were combined with the flow field measurements. Analysis of the fluctuating deformation reveals chordwise and spanwise modes, which are due to the shedding of leading-edge vortices as well as tip vortices. At higher angles of attack, the second mode in the chordwise direction becomes dominant as the vortex shedding takes place. The dominant frequencies of the membrane vibrations are similar to those of two-dimensional membrane airfoils. Measured frequency of vortex shedding from the low aspect ratio rigid wing suggests that membrane vibrations occur at the natural frequencies close to the harmonics of the wake instabilities. Vortex shedding frequency from rigid wings shows remarkably small effect of aspect ratio even when it is as low as unity.  相似文献   

20.
This paper presents a 2D analytical solution for the transverse velocity distribution in compound open channels based on the Shiono and Knight method (SKM), in which the secondary flow coefficient (K-value) is introduced to take into account the effect of the secondary flow. The modeling results agree well with the experimental results from the Science and Engineering Research Council-Flood Channel Facility (SERC-FCF). Based on the SERC-FCF, the effects of geography on the secondary flow coefficient and the reason for such effects are analyzed. The modeling results show that the intensity of the secondary flow is related to the geometry of the section of the compound channel, and the sign of the K-value is related to the rotating direction of the secondary flow cell. This study provides a scientific reference to the selection of theK-value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号