首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Resonant multi-modal dynamics due to planar 2:1 internal resonances in the non-linear, finite-amplitude, free vibrations of horizontal/inclined cables are parametrically investigated based on the second-order multiple scales solution in Part I [1] (in press). The already validated kinematically non-condensed cable model accounts for the effects of both non-linear dynamic extensibility and system asymmetry due to inclined sagged configurations. Actual activation of 2:1 resonances is discussed, enlightening on a remarkable qualitative difference of horizontal/inclined cables as regards non-linear orthogonality properties of normal modes. Based on the analysis of modal contribution and solution convergence of various resonant cables, hints are obtained on proper reduced-order model selections from the asymptotic solution accounting for higher-order effects of quadratic nonlinearities. The dependence of resonant dynamics on coupled vibration amplitudes, and the significant effects of cable sag, inclination and extensibility on system non-linear behavior are highlighted, along with meaningful contributions of longitudinal dynamics. The spatio-temporal variation of non-linear dynamic configurations and dynamic tensions associated with 2:1 resonant non-linear normal modes is illustrated. Overall, the analytical predictions are validated by finite difference-based numerical investigations of the original partial-differential equations of motion.  相似文献   

2.
This paper is first of the two papers dealing with analytical investigation of resonant multi-modal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables – which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations – are presented. A multi-dimensional Galerkin expansion of the solution of nonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effects of quadratic/cubic nonlinearities, approximate closed-form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation.  相似文献   

3.
The nonlinear dynamic behaviors of a double cable-stayed shallow arch model are investigated under the one-to-one-to-one internal resonance among the lowest modes of cables and the shallow arch and external primary resonance of cables. The in-plane governing equations of the system are obtained when the harmonic excitation is applied to cables. The excitation mechanism due to the angle-variation of cable tension during motion is newly introduced. Galerkin's method and the multi-scale method are used to obtain ordinary differential equations(ODEs) of the system and their modulation equations, respectively. Frequency-and force-response curves are used to explore dynamic behaviors of the system when harmonic excitations are symmetrically and asymmetrically applied to cables. More importantly, comparisons of frequency-response curves of the system obtained by two types of trial functions, namely, a common sine function and an exact piecewise function, of the shallow arch in Galerkin's integration are conducted.The analysis shows that the two results have a slight difference; however, they both have sufficient accuracy to solve the proposed dynamic system.  相似文献   

4.
Kang  Houjun  Su  Xiaoyang  Pi  Zihao 《Nonlinear dynamics》2022,107(2):1545-1568

Support stiffness is one of important factors on structure dynamics. Considering the vertical support stiffness, a multi-cable-stayed shallow-arch model of the cable-stayed bridge is established. Its differential equation governing the planar motion of cables and the shallow arch and the boundary conditions are derived by Hamilton’s principle. Firstly, the in-plane free vibration of the system is explored in order to find the modal functions and the possible internal resonances of nonlinear dynamics. Then, the 1:2:2 internal resonance among the different modes of the shallow arch and two cables are investigated by the multiple time scale method and pseudo-arclength algorithm. Meanwhile, the frequency-/force–response curves are used to explore the nonlinear behaviors of the system, especially the influence of vertical support stiffness, excitation frequency and amplitude on the internal resonance of the system is considered. To a certain extent, the support stiffness can reduce the response amplitudes of members by absorbing some energy from excitation.

  相似文献   

5.
吕建根  康厚军 《力学季刊》2016,37(3):572-580
本文研究桥梁工程中含弯曲刚度斜拉索的面内面外内共振问题.描述了工程中斜拉索变形的三种状态,考虑弯曲刚度、大变形及垂度等因素,忽略斜拉索纵向惯性力的影响,运用Hamilton变分原理建立了含弯曲刚度的斜拉索面内面外耦合偏微分控制方程,采用Galerkin方法对偏微分方程离散,并运用多尺度摄动方法进行了求解,获得了斜拉索可能存在的内共振模式,以工程中一根斜拉索为例,运用有限元法对其进行动力特性分析,列出了斜拉索前10阶面内面外振动频率,找出面内面外可能产生内共振的模态,分别研究了主共振条件下斜拉索面内和面外1:1、2:1内共振情形,获得了有意义的结论.  相似文献   

6.
The nonlinear characteristics in the large amplitude three-dimensionalfree vibrations of inclined sagged elastic cables are investigated. Amodel formulation which is not limited to cables having smallsag-to-span ratios and takes into account the axial deformation effectis considered. Based on a multi-degree-of-freedom cable model, a finitedifference discretization is employed within a numerical solution of thegoverning equations of three-dimensional coupled motion. Variousnumerical examples of arbitrarily inclined sagged cables with initialout-of-plane or in-plane motions are carried out for the case of aspecified end tension. The major findings consist of highlighting theextent of two-and three-dimensional nonlinear couplings, the occurrenceof nonlinear dynamic tensions, and the meaningfulness of modaltransition phenomena ensuing from the activation of various internalresonance conditions. The influence of cable inclination on thenonlinear dynamic behavior is also evaluated. Comprehensive discussionand comparison of large amplitude free vibrations of horizontal andinclined sagged cables are presented.  相似文献   

7.
An elastic section model is proposed to analyze some characteristic issues of the cable-supported bridge dynamics through an equivalent planar multi-body system. The quadratic non-linearities of the four-degree-of-freedom model essentially describe the geometric coupling which may strongly characterize the dynamic interactions of the bridge deck and a pair of identical suspension cables (hangers or stays). The linear modal solution shows that the flexural and torsional modes of the deck (global modes) typically co-exist with symmetric or anti-symmetric modes of the cables (local modes). The combinations of parameters which realize remarkable 2:1:1 internal resonance conditions among one of the global modes (with higher natural frequency) and two local modes (with lower and close natural frequencies) are obtained by virtue of a multiparameter perturbation method. The non-linear response of the resonant systems shows that the global deck motion – directly forced at primary resonance by an external harmonic load – can parametrically excite the local cable motion, when the deck vibration amplitude overcomes the critical value at which a period-doubling bifurcation occurs. The relevant effects of both viscous damping and internal detuning on the instability boundaries are parametrically investigated. All the internal resonance conditions as well as the critical vibration amplitudes are expressed as an explicit, though asymptotically approximate, function of the structural parameters.  相似文献   

8.
The free non-linear vibration of a rotating beam has been considered in this paper. The von Karman strain-displacement relations are implemented. Non-linear equations of motion are obtained by Hamilton’s principle. Results are obtained by applying the method of multiple scales to a set of discretized ordinary differential equations which obtained by using the Galerkin discretization method. This set contains coupling between transverse and axial displacements as quadratic and cubic geometric non-linearities. Non-linear normal modes and non-linear natural frequencies with or without internal resonance are observed. In the internal resonance case, the internal resonance between two transverse modes and between one transverse and one axial mode are explored. Obtained results in this study are compared with those obtained from literature. The stability and some dynamic characteristics of the non-linear normal modes such as the phase portrait, Poincare section and power spectrum diagrams have been inspected. It is shown that, for the first internal resonance case, the beam has one stable or degenerate uncoupled mode and either: (a) one stable coupled mode, (b) one unstable coupled mode, (c) two stable and one unstable coupled modes, (d) three stable coupled modes, and (e) one stable coupled mode. On the other hand, for the second internal resonance case, the beam has one stable or unstable or degenerate uncoupled mode and either: (a) two stable coupled modes, (b) two unstable coupled modes, and (c) one stable coupled mode depending on the parameters.  相似文献   

9.
Coupled, forced response of an axially moving strip with internal resonance   总被引:1,自引:0,他引:1  
In this paper, the forced response of a non-linear axially moving strip with coupled transverse and longitudinal motions is studied. In particular, the response of the system is examined in the neighborhood of a 3 : 1 internal resonance between the first two transverse modes. The equations of motion are derived using the Hamilton's Principle and discretized by the Galerkin's method. First, with the longitudinal motion neglected, the forced transverse response is investigated by applying the method of multiple scales to assess the effects of speed and the internal resonance. In general, the speed is shown to affect each mode differently. The internal resonance results in the constant solutions having transition to instability of both a saddle-node type and a Hopf bifurcation. In the region where the Hopf bifurcation occurs, steady-state periodic motion does not exist. Instead the stable motion is amplitude- and phase-modulated. When the coupled system with longitudinal motion is examined with internal resonance, results reveal that the modulated motions disappear. Thus, the presence of the longitudinal motion has a stabilizing effect on the transverse modes in the Hopf bifurcation region. The second longitudinal mode is shown to drift due primarily to a direct excitation of the first transverse mode. Effects of the longitudinal motion on the transverse response are shown to be significant for speeds both away from and close to the critical speed.  相似文献   

10.
大跨悬索桥抖振内力响应分析   总被引:2,自引:1,他引:1  
基于虚拟激励法和有限元法,在频域建立了一种新的桥梁抖振内力响应分析的随机振动方法。该方法与传统随机振动方法相比具有如下两个特点:(1)单元抖振内力响应同时考虑了保留模态多模态耦合产生的动力效应和保留模态外高频模态产生的拟静力效应;(2)单元抖振内力响应同时考虑了单元杆端位移产生的单元杆端力和单元上分布荷载产生的单元固端力。以香港青马悬索桥为例,分析了保留模态多模态耦合产生的动力效应、高频模态拟静力效应、单元上分布荷载产生的单元固端力及主缆上的抖振荷载等因素对主梁抖振内力响应的贡献。结果表明:保留模态多模态耦合产生的动力效应对主梁抖振内力响应占据主导地位,高频模态拟静力效应、单元上分布荷载产生的单元固端力等因素对主梁抖振内力响应均有一定的影响,主缆上的抖振荷载对主梁侧向抖振内力响应有较大贡献。  相似文献   

11.
研究了外激励下两端采用转动弹簧约束的铰支浅拱在发生1:1内共振时的非线性动力学行为。通过引入基本假定和无量纲化变量得到浅拱的动力学控制方程, 将阻尼项、外荷载项和非线性项去掉后,所得线性方程及对应边界条件即可确定考虑转动弹簧影响的频率和模态, 发现转动约束取不同刚度值时系统存在模态交叉与模态转向两种内共振形式。对动力方程进行Galerkin全离散, 并采用多尺度法对内共振进行了摄动分析, 得到了极坐标和直角坐标两种形式的平均方程, 其中平均方程系数与转动弹簧刚度一一对应。最低两阶模态之间1:1内共振的数值研究结果表明: 外激励能激发内共振模态的非线性相互作用, 参数处于某一范围时系统存在周期解、准周期解和混沌解窗口, 且通过(逆)倍周期分岔方式进入混沌。  相似文献   

12.
We investigate the non-linear forced vibrations of a thermally loaded annular plate with clamped–clamped immovable boundary conditions in the presence of a three-to-one internal resonance between the first and second axisymmetric modes. We consider the in-plane thermal load to be axisymmetric and excite the plate externally by a harmonic force near primary resonance of the second mode. We then use the non-linear von Kármán plate equations to model the behavior of the system and apply the method of multiple scales to investigate its responses. We found that the response can be periodic oscillations consisting of both modes, with a large component from the first mode. Moreover, the periodic solutions may undergo Hopf bifurcations, which lead to aperiodic oscillations of the plate.  相似文献   

13.
A non-linear finite element model of inclined cables, i.e. cables with non-leveled supports, in the large displacement and deformation fields is proposed for computing the dynamic response to wind loads which blow in arbitrary direction. The initial equilibrium, assumed as the static configuration under self-weight and mean wind component, is defined by a continuous approach, following an iterative procedure which starts from the configuration under self-weight only. The proposed formulation, which accounts for longitudinal inertia forces, allows to spot the circumstances when the simplified small-sag approach, adopting longitudinal mode condensation, becomes too crude. Numerical simulations have been performed employing the Proper Orthogonal Decomposition to lower the computational effort.  相似文献   

14.
This study focuses on the bifurcation characteristics of the four degree-of-freedom gear system with local spalling defect to explore the spalling nonlinear dynamic mechanism. The dynamic model of the gear system with spalling defect, time-variant mesh stiffness, and nonlinear clearance is established to investigate the effect of spalling defect on mesh stiffness and dynamic bifurcation. The primary resonance and internal resonance responses of the spalling model are analyzed by the averaging method, and the bifurcation characteristics with the evolvement of spall and internal excitation are studied by employing the singularity theory for the two-state variable system, which reveal the different bifurcation characteristics caused by the spalling defect. The results obtained herein can provide a theoretical basis to spalling fault diagnosis of gearbox.  相似文献   

15.
A numerical method, based on the invariant manifold approach, is presented for constructing non-linear normal modes for systems with internal resonances. In order to parameterize the non-linear normal modes of interest, multiple pairs of system state variables involved in the internal resonance are kept as ‘seeds’ for the construction of the multi-mode invariant manifold. All the remaining degrees of freedom are then constrained to these ‘seed’, or master, variables, resulting in a system of non-linear partial differential equations that govern the constraint relationships, and these are solved numerically. The computationally-intensive solution procedure uses a combination of finite difference schemes and Galerkin-based expansion approaches. It is illustrated using two examples, both of which focus on the construction of two-mode models. The first example is based on the analysis of a simple three-degree-of-freedom example system, and is used to demonstrate the approach. An invariant manifold that captures two non-linear normal modes is constructed, resulting in a reduced order model that accurately captures the system dynamics. The methodology is then applied to a larger order system, specifically, an 18-degree-of-freedom rotating beam model that features a three-to-one internal resonance between the first two flapping modes. The accuracy of the non-linear two-mode reduced order model is verified by comparing time-domain simulations of the two DOF model and the full system equations of motion.  相似文献   

16.
Non-linear interactions in a hinged-hinged uniform moderately curved beam with a torsional spring at one end are investigated. The two-mode interaction is a one-to-one autoparametric resonance activated in the vicinity of veering of the frequencies of the lowest two modes and results from the non-linear stretching of the beam centerline. The excitation is a base acceleration that is involved in a primary resonance with either the first mode only or with both modes. The ensuing non-linear responses and their stability are studied by computing force- and frequency-response curves via bifurcation analysis tools. Both the sensitivity of the internal resonance detuning—the gap between the veering frequencies—and the linear modal structure are investigated by varying the rise of the beam half-sinusoidal rest configuration and the torsional spring constant. The internal and external resonance detunings are varied accordingly to construct the non-linear system response curves. The beam mixed-mode response is shown to undergo several bifurcations, including Hopf and homoclinic bifurcations, along with the phenomenon of frequency island generation and mode localization.  相似文献   

17.
The non-linear normal modes (NNMs) and their bifurcation of a complex two DOF system are investigated systematically in this paper. The coupling and ground springs have both quadratic and cubic non-linearity simultaneously. The cases of ω1:ω2=1:1, 1:2 and 1:3 are discussed, respectively, as well as the case of no internal resonance. Approximate solutions for NNMs are computed by applying the method of multiple scales, which ensures that NNM solutions can asymtote to linear normal modes as the non-linearity disappears. According to the procedure, NNMs can be classified into coupled and uncoupled modes. It is found that coupled NNMs exist for systems with any kind of internal resonance, but uncoupled modes may appear or not appear, depending on the type of internal resonance. For systems with 1:1 internal resonance, uncoupled NNMs exist only when coefficients of cubic non-linear terms describing the ground springs are identical. For systems with 1:2 or 1:3 internal resonance, in additional to one uncoupled NNM, there exists one more uncoupled NNM when the coefficients of quadratic or cubic non-linear terms describing the ground springs are identical. The results for the case of internal resonance are consistent with ones for no internal resonance. For the case of 1:2 internal resonance, the bifurcation of the coupled NNM is not only affected by cubic but also by quadratic non-linearity besides detuning parameter although for the cases of 1:1 and 1:3 internal resonance, only cubic non-linearity operate. As a check of the analytical results, direct numerical integrations of the equations of motion are carried out.  相似文献   

18.
基于增量热场理论,利用Hamilton变分原理,通过引入与张拉力和垂度相关的无量纲参数,建立了考虑温度变化影响下斜拉索非线性动力学模型,并推导其面内/外非线性运动微分方程。考虑斜拉索受端部激励,利用Galerkin法得到离散后的无穷维常微分方程组。面内和面外运动各取前两阶模态,向前和向后扫频,利用龙格-库塔法数值积分求解常微分方程组,得到共振区域的幅频响应曲线。算例分析表明,温度变化和斜拉索固有频率呈反比例关系;温度变化会导致斜拉索共振特性发生定性和定量的改变,如共振区间发生漂移、跳跃点位置发生移动、共振响应幅值发生改变;端部位移激励下,温度变化有可能导致斜拉索更多模态受到激发,从而影响各阶模态的能量以及模态间的能量传递。  相似文献   

19.
斜拉桥拉索的振动问题一直是桥梁工程领域的研究热点。为揭示拉索大幅振动的力学机理,课题组建立了斜拉桥的全桥精细化模型,本文测试和研究了单频激励下的斜拉桥可能的非线性振动行为。首先,通过自由振动试验测试了模型的模态参数,并与两类有限元模型(OECS模型和MECS模型)进行对比,结果吻合良好。其次,试验研究了在单个竖向简谐激励下斜拉桥模型的非线性响应。研究发现:当激励频率与斜拉桥某阶全局模态频率接近时,主梁产生主共振,并引起多根长索产生大幅的参强振动;当激励频率与某根斜拉索面内一阶频率之比为1:2或者2:1时,可以观测到索中产生超谐波和亚谐波共振现象。  相似文献   

20.
The non-linear dynamic behavior of a novel model of a single-story asymmetric structure under earthquake and harmonic excitations and near two-to-one internal resonance is investigated. The non-linearities of the proposed model, ignored in conventional linear models, are caused by non-linear inertial coupling between translational and torsional degrees of freedom defined in the directions of a non-inertial rotational system of reference, attached to the center of mass of the floor. The multiple scales method is used to achieve approximately linear solutions for the originally non-linear equations near a two-to-one ratio of external and internal resonant conditions. The suitability of the proposed model is justified by the similarity between the simulated response of the non-linear model and the experimental results. The numerical results of time history and frequency domain analyses illustrate the difference between the non-linear and linear models. Energy transfer from a lower natural frequency excited mode to a higher one due to non-linear interaction in the novel model is shown. The effects of amplitude, frequency detuning parameters, uncoupled lateral and torsional frequencies, and damping ratio on the responses are inspected and some non-linear phenomena such as hysteresis, jumping, hardening, and softening are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号