首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal cage complexes [(Me2N)3MO]4 (M = Nb, 3; Ta, 4) have been prepared from the reactions of M(NMe2)5 (M = Nb, 1; Ta, 2) with water. Single crystal X-ray diffraction studies of 3 and 4 reveal that they adopt cubane-like structures with M–O bridges. Variable-temperature NMR studies of –NMeAMeB rotations in 3 and 4 have been performed to give the following activation parameters for the exchanges: ΔH  = −1.4(1.1) kJ/mol, ΔS  = −209(8) J/mol K, \Updelta G 30 8  \textK 1 = 6 4( 2)  \textkJ/\textmol \Updelta G_{{_{{ 30 8\;{\text{K}}}} }}^{{^{ \ne } }} = 6 4\left( 2\right)\;{\text{kJ}}/{\text{mol}} for 3, and ΔH  = −0.9(1.2) kJ/mol, ΔS  = −2.1(0.2) × 102 J/mol K, \Updelta G 30 8  \textK 1 = 6 3( 6)  \textkJ/\textmol \Updelta G_{{ 30 8\;{\text{K}}}}^{{^{ \ne } }} = 6 3\left( 6\right)\;{\text{kJ}}/{\text{mol}} for 4.  相似文献   

2.
Thermal behavior of 1,2,3-triazole nitrate   总被引:1,自引:0,他引:1  
The thermal decomposition behaviors of 1,2,3-triazole nitrate were studied using a Calvet Microcalorimeter at four different heating rates. Its apparent activation energy and pre-exponential factor of exothermic decomposition reaction are 133.77 kJ mol−1 and 1014.58 s−1, respectively. The critical temperature of thermal explosion is 374.97 K. The entropy of activation (ΔS ), the enthalpy of activation (ΔH ), and the free energy of activation (ΔG ) of the decomposition reaction are 23.88 J mol−1 K−1, 130.62 kJ mol−1, and 121.55 kJ mol−1, respectively. The self-accelerating decomposition temperature (T SADT) is 368.65 K. The specific heat capacity was determined by a Micro-DSC method and a theoretical calculation method. Specific heat capacity equation is C\textp ( \textJ mol - 1 \text K - 1 ) = - 42.6218 + 0.6807T C_{\text{p}} \left( {{\text{J mol}}^{ - 1} {\text{ K}}^{ - 1} } \right) = - 42.6218 + 0.6807T (283.1 K < T < 353.2 K). The adiabatic time-to-explosion is calculated to be a certain value between 98.82 and 100.00 s. The critical temperature of hot-spot initiation is 637.14 K, and the characteristic drop height of impact sensitivity (H 50) is 9.16 cm.  相似文献   

3.
The interaction of thiosemicarbazide with the title complex has been studied spectrophotometrically in aqueous medium as a function of [complex], [thiosemicarbazide], pH and temperature at constant ionic strength. At pH 7.4, the reaction shows two distinct paths; both of which are [thiosemicarbazide] dependent. A parallel reaction scheme fits well with the experimental findings. An associative interchange mechanism is proposed for both the paths; the activation parameters calculated from Eyring plots are ΔH1 = 14.2 ± 0.8 kJ mol−1, ΔS1 = −241 ± 2 JK−1 mol−1, ΔH2 = 30.8 ± 1.4 kJ mol−1 and ΔS2 = −236 ± 4 JK−1 mol−1. From the temperature dependence of the outer sphere association complex equilibrium constants, the thermodynamic parameters calculated are ΔH1° = 34.25 ± 1.9 kJ mol−1, ΔS1° = 146 ± 6 J K−1 mol−1 and ΔH2° = 9.4 ± 1.1 kJ mol−1, ΔS2° = 71 ± 3 JK−1 mol−1, which gives a negative ΔG° at all temperatures studied, supporting the spontaneous formation of an outer sphere association complex.  相似文献   

4.
Kinetics of aqua ligand substitution from cis-[Ru(bpy)2(H2O)2]2+ by three vicinal dioximes, namely dimethylglyoxime (L1H), 1,2-cyclohexane dionedioxime (L2H) and α-furil dioxime (L3H) have been studied spectrophotometrically in the 45–60 °C temperature range. The rate constants increase with increasing dioxime concentration and approach a limiting condition. We propose the following rate law for the reaction in the 3.5–5.5 pH range: where k 2 is the interchange rate constant from outer sphere to inner sphere complex and K E is the outer sphere association equilibrium constant. Activation parameters were calculated from the Eyring plots for all three systems: ΔH  = 59.2 ± 8.8, 63.1 ± 6.8 and 69.7 ± 8.5 kJ mol−1, ΔS  = −122 ± 27, −117 ± 21 and −99 ± 26 J K−1 mol−1 for L1H, L2H and L3H, respectively. An associative interchange mechanism is proposed for the substitution process. Thermodynamic parameters calculated from the temperature dependence of the outer sphere association equilibrium constants give negative ΔG 0 values for all the systems studied at all the temperatures (ΔH 0 = 30.05 ± 2.5, 18.9 ± 1.1 and 11.8 ± 0.2 kJ mol−1; ΔS 0 = 123 ± 8, 94 ± 3 and 74 ± 1 J K−1 mol−1 for L1H, L2H and L3H, respectively), which also support our proposition.  相似文献   

5.
Monomeric extracellular endoglucanase (25 kDa) of transgenic koji (Aspergillus oryzae cmc-1) produced under submerged growth condition (7.5 U mg−1 protein) was purified to homogeneity level by ammonium sulfate precipitation and various column chromatography on fast protein liquid chromatography system. Activation energy for carboxymethylcellulose (CMC) hydrolysis was 3.32 kJ mol−1 at optimum temperature (55 °C), and its temperature quotient (Q 10) was 1.0. The enzyme was stable over a pH range of 4.1–5.3 and gave maximum activity at pH 4.4. V max for CMC hydrolysis was 854 U mg−1 protein and K m was 20 mg CMC ml−1. The turnover (k cat) was 356 s−1. The pK a1 and pK a2 of ionisable groups of active site controlling V max were 3.9 and 6.25, respectively. Thermodynamic parameters for CMC hydrolysis were as follows: ΔH* = 0.59 kJ mol−1, ΔG* = 64.57 kJ mol−1 and ΔS* = −195.05 J mol−1 K−1, respectively. Activation energy for irreversible inactivation ‘E a(d)’ of the endoglucanase was 378 kJ mol−1, whereas enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) of activation at 44 °C were 375.36 kJ mol−1, 111.36 kJ mol−1 and 833.06 J mol−1 K−1, respectively.  相似文献   

6.
The effect of some prepared compounds, namely 3,5-dimethyl-1H-pyrazole (P1), 3(5)-amino-5(3)-methylpyrazole (P2), and 1′,3,5,5′-tetramethyl-1′H-1,3′-bipyrazole (P3), on the corrosion behaviour of steel in 1.0 M hydrochloric acid solution as corrosive medium has been investigated at 308 K using weight-loss measurement, potentiodynamic polarisation, linear polarisation, and impedance spectroscopy (EIS). Generally, inhibition efficiency of the investigated compounds was found to depend on the concentration and nature of the inhibitor. P3 was a better inhibitor than P1 and P2, and its inhibition efficiency increased with increasing concentration of inhibitor, attaining 94% above 10−3  M. Potentiodynamic polarisation studies clearly reveal that P3 acts essentially as a cathodic inhibitor. E (%) values obtained from different methods are in reasonably good agreement. EIS measurements show an increase of transfer resistance with inhibitor concentration. Partial π-charge on atoms was calculated. Correlation between the highest occupied molecular orbital energy E HOMO and inhibition efficiencies was sought. The temperature effect on the corrosion behaviour of steel in 1.0 M HCl without and with different concentrations of inhibitor P3 was studied in the temperature range 308 to 343 K. Thermodynamic data, for example heat of adsorption ( \Updelta H\textads° \Updelta H_{\text{ads}}^{^\circ } ), entropy of adsorption ( \Updelta S\textads° \Updelta S_{\text{ads}}^{^\circ } ) and free energy of adsorption ( \Updelta G\textads° \Updelta G_{\text{ads}}^{^\circ } ) were calculated by use of thermodynamic equations. Kinetic activation data, for example E a, ΔH*, ΔS* and pre-exponential factor, were calculated, and are discussed. The inhibiting action of P3 on the corrosion of steel in 1–10 M hydrochloric acid was also studied by weight-loss measurement. The rate constant and reaction constant were calculated for the corrosion reactions. Adsorption of P3 on the steel surface in 1.0 M HCl follows the Langmuir isotherm model.  相似文献   

7.
Polymorphism of paracetamol   总被引:1,自引:0,他引:1  
The thermodynamic relationship between crystal modifications of paracetamol was studied by alternative methods. Temperature dependence of saturated vapor pressure for polymorphic modifications of the drug paracetamol (acetaminophen) was mea sured and thermodynamic functions of the sublimation process calculated. Solution calorimetry was carried out for the two modifications in the same solvent. Thermodynamic parameters for sublimation for form I (monoclinic) were found: ΔG sub298=60.0 kJ mol−1; ΔH sub298=117.9±0.7 kJ mol−1; ΔS sub298=190±2 J mol−1 K−1. For the orthorhombic modification (form II), the saturated vapor pressure could only be studied at 391 K. Phase transition enthalpy at 298 K, ΔH tr298(I→II)=2.0±0.4 kJ mol−1, was derived as the difference between the solution enthalpies of the noted polymorphs in the same solution (methanol). Based on ΔH tr298 (I→II), differences between temperature dependencies of heat capacities of both modifications and the vapor pressure value of form II at 391 K, the temperature dependence of saturated vapor pressure and thermodynamic sublimation parameters for modification II were also estimated (ΔG sub298=56.1 kJ mol−1; ΔH sub298=115.9±0.9 kJ mol−1; ΔS sub298=200±3 J mol−1 K−1). The results indicate that the modifications are monotropically related, which is in contrast to findings recently reported found by classical thermochemical methods.  相似文献   

8.
The two-state reaction mechanism of the Pt4+/− with N2O (CO) on the quartet and doublet potential energy surfaces has been investigated at the B3LYP level. The effect of Pt4 anion assistance is analyzed using the activation strain model in which the activation energy (ΔΕ ) is decomposed into the distortion energies (\Updelta E 1 \textdist ) (\Updelta E^{ \ne }_{\text{dist}} ) and the stabilizing transition state (TS) interaction energies (\Updelta E 1 \textint ) (\Updelta E^{ \ne }_{\text{int}} ) , namely \Updelta E 1 = \Updelta E 1 \textdist + \Updelta E 1 \textint \Updelta E^{ \ne } = \Updelta E^{ \ne }_{\text{dist}} + \Updelta E^{ \ne }_{\text{int}} . The lowering of activation barriers through Pt4 anion assistance is caused by the TS interaction \Updelta E 1 \textint \Updelta E^{ \ne }_{\text{int}} (−90.7 to −95.6 kcal/mol) becoming more stabilizing. This is attributed to the N2O π*-LUMO and Pt d HOMO back-donation interactions. However, the strength of the back-donation interactions has significantly impact on the reaction mechanism. For the Pt4 anion system, it has very significant back-bonding interaction (N2O negative charge of 0.79e), HOMO has 81.5% π* LUMO(N2O) character, with 3d orbital contributions of 10.7% from Pt(3) and 7.7% from Pt(7) near the 4TS4 transition state. This facilitates the bending of the N2O molecule, the N–O bond weakening, and an O(2P) dissociation without surface crossing. For the Pt4 + cation system, the strength of the charge transfer is weaker, which leads to the diabatic (spin conserving) dissociation of N2O: N2O(1+) → N2(1g+) + O(1D). The quartet to doublet state transition should occur efficiently near the 4TS1 due to the larger SOC value calculated of 677.9 cm−1. Not only will the reaction overcome spin-change-induced barrier (ca. 7 kcal/mol) but also overcome adiabatic barrier (ca. 40.1 kcal/mol).Therefore, the lack of a thermodynamic driving force is an important factor contributing to the low efficiency of the reaction system.  相似文献   

9.
Derivative of 8-hydroxyquinoline i.e. Clioquinol is well known for its antibiotic properties, drug design and coordinating ability towards metal ion such as Copper(II). The structure of mixed ligand complexes has been investigated using spectral, elemental and thermal analysis. In vitro anti microbial activity against four bacterial species were performed i.e. Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus substilis and found that synthesized complexes (15–37 mm) were found to be significant potent compared to standard drugs (clioquinol i.e. 10–26 mm), parental ligands and metal salts employed for complexation. The kinetic parameters such as order of reaction (n = 0.96–1.49), and the energy of activation (E a = 3.065–142.9 kJ mol−1), have been calculated using Freeman–Carroll method. The range found for the pre-exponential factor (A), the activation entropy (S* = −91.03 to−102.6 JK−1 mol−1), the activation enthalpy (H* = 0.380–135.15 kJ mol−1), and the free energy (G* = 33.52–222.4 kJ mol−1) of activation reveals that the complexes are more stable. Order of stability of complexes were found to be [Cu(A4)(CQ)OH] · 4H2O > [Cu(A3)(CQ)OH] · 5H2O > [Cu(A1)(CQ)OH] · H2O > [Cu(A2)(CQ)OH] · 3H2O  相似文献   

10.
The thermal decomposition behavior of 3,4,5-triamino-1,2,4-triazole dinitramide was measured using a C-500 type Calvet microcalorimeter at four different temperatures under atmospheric pressure. The apparent activation energy and pre-exponential factor of the exothermic decomposition reaction are 165.57 kJ mol−1 and 1018.04 s−1, respectively. The critical temperature of thermal explosion is 431.71 K. The entropy of activation (ΔS ), enthalpy of activation (ΔH ), and free energy of activation (ΔG ) are 97.19 J mol−1 K−1, 161.90 kJ mol−1, and 118.98 kJ mol−1, respectively. The self-accelerating decomposition temperature (T SADT) is 422.28 K. The specific heat capacity of 3,4,5-triamino-1,2,4-triazole dinitramide was determined with a micro-DSC method and a theoretical calculation method. Specific heat capacity (J g−1 K−1) equation is C p = 0.252 + 3.131 × 10−3  T (283.1 K < T < 353.2 K). The molar heat capacity of 3,4,5-triamino-1,2,4-triazole dinitramide is 264.52 J mol−1 K−1 at 298.15 K. The adiabatic time-to-explosion of 3,4,5-triamino-1,2,4-triazole dinitramide is calculated to be a certain value between 123.36 and 128.56 s.  相似文献   

11.
3,3-Dinitroazetidinium (DNAZ) salt of perchloric acid (DNAZ·HClO4) was prepared, it was characterized by the elemental analysis, IR, NMR, and a X-ray diffractometer. The thermal behavior and decomposition reaction kinetics of DNAZ·HClO4 were investigated under a non-isothermal condition by DSC and TG/DTG techniques. The results show that the thermal decomposition process of DNAZ·HClO4 has two mass loss stages. The kinetic model function in differential form, the value of apparent activation energy (E a) and pre-exponential factor (A) of the exothermic decomposition reaction of DNAZ·HClO4 are f(α) = (1 − α)−1/2, 156.47 kJ mol−1, and 1015.12 s−1, respectively. The critical temperature of thermal explosion is 188.5 °C. The values of ΔS , ΔH , and ΔG of this reaction are 42.26 J mol−1 K−1, 154.44 kJ mol−1, and 135.42 kJ mol−1, respectively. The specific heat capacity of DNAZ·HClO4 was determined with a continuous C p mode of microcalorimeter. Using the relationship between C p and T and the thermal decomposition parameters, the time of the thermal decomposition from initiation to thermal explosion (adiabatic time-to-explosion) was evaluated as 14.2 s.  相似文献   

12.
The kinetics of the intra-molecular electron transfer of an adduct of l-ascorbic acid and the [Fe3IIIO(CH3COO)6(H2O)3]+ cation in aqueous acetate buffer was studied spectrophotometrically, over the ranges 2.55 ≤ pH ≤ 3.74, 20.0 ≤ θ ≤ 35.0 °C, at an ionic strength of 0.50 and 1.0 mol dm−3 (NaClO4). The reaction of l-ascorbic acid and the complex cation involves the rapid formation of an adduct species followed by a slower reduction in the iron centres through consecutive one-electron transfer processes. The final product of the reaction is aqueous iron(II) in acetate buffer. The proposed mechanism involves the triaqua and diaqua-hydroxo species of the complex cation, both of which form adducts with l-ascorbic acid. At 25 °C, the equilibrium constant for the adduct formation was found to be 86 ± 15 and 5.8 ± 0.2 dm3 mol−1 for the triaqua and diaqua-hydroxo species, respectively. The kinetic parameters derived from the rate expression have been found to be: k 0 = (1.12 ± 0.02) × 10−2 s−1 for the combined spontaneous decomposition and k 1 = (4.47 ± 0.06) × 10−2 s−1H 1 = 51.0 ± 2.3 kJ mol−1, ΔS 1 = −100 ± 8 J K−1 mol−1), k 2 = (4.79 ± 0.38) × 10−1 s−1H 2 = 76.5 ± 0.8 kJ mol−1, ΔS 2 = 6 ± 3 J K−1 mol−1) for the triaqua and diaqua-hydoxo species, respectively.  相似文献   

13.
The vaporization enthalpies and liquid vapor pressures from T = 298.15 K to T = 400 K of 1,3,5-triazine, pyrazine, pyrimidine, and pyridazine using pyridines and pyrazines as standards have been measured by correlation-gas chromatography. The vaporization enthalpies of 1,3,5-triazine (38.8 ± 1.9 kJ mol−1) and pyrazine (40.5 ± 1.7 kJ mol−1) obtained by these correlations are in good agreement with current literature values. The value obtained for pyrimidine (41.0 ± 1.9 kJ mol−1) can be compared with a literature value of 50.0 kJ mol−1. Combined with the condensed phase enthalpy of formation in the literature, this results in a gas-phase enthalpy of formation, Δf H m (g, 298.15 K), of 187.6 ± 2.2 kJ mol−1 for pyrimidine, compared to a value of 195.1 ± 2.1 calculated for pyrazine. Vapor pressures also obtained by correlation are used to predict boiling temperatures (BT). Good agreement with experimental BT (±4.2 K) including results for pyrimidine is observed for most compounds with the exception of the pyridazines. The results suggest that compounds containing one or two nitrogen atoms in the ring are suitable standards for correlating various heterocyclic compounds provided the nitrogen atoms are isolated from each other by carbon. Pyridazines do not appear to be evaluated correctly using pyridines and pyrazines as standards.  相似文献   

14.

Abstract  

The interaction between chromium(III) and picolinic acid in weak acid aqueous solution was studied, resulting in the formation of a complex upon substitution of water molecules in the chromium(III) coordination sphere. Experimental results show that the reaction takes place in multiple steps. The first step is the formation of an ion pair, the second step (two consecutive steps) is the slow one corresponding to substitution of the first water molecule from the chromium aqueous complex coordination sphere by a picolinic acid molecule via oxygen atom of the carboxylic acid group and substitution of the second water molecule via nitrogen of the pyridine ring forming an 1:1 complex. Both consecutive steps were independent of chromium concentration. The rate constants of the 1st and 2nd consecutive steps were increased by increasing picolinic acid concentration. The corresponding activation parameters are ∆H 1obs * = 28.4 ± 4 kJ mol−1, ∆S 1obs * = −202 ± 26 J K−1 mol−1, ∆H 2obs * = 39.6 ± 5 kJ mol−1, and ∆S 2obs * = −175 ± 19 J K−1 mol−1. The third step is fast, corresponding to formation of the final complex [Cr(pic)3]. The logarithms of the formation constants of 1:1 and 1:3 complexes were found to be 1.724 and 4.274, respectively.  相似文献   

15.
The cohesion potential energy of the crystal of one enantiomer of ethyl 3-cyano-3-(3,4-dimethyloxyphenyl)-2,2,4-trimethylpentanoate, −47.7 ± 0.1 kJ mol−1 (0–90°C), was found out from the heat of sublimation (123.2 ± 5.1 kJ mol−1, 78.6°C) and the kinetic energies for the gas phase and the crystal. It was found that the entropy function of Debye’s theory of solids mathematically agreed with the vibrational entropy of the gas (variationally obtained), allowing to disclose the vibrational energy using the Debye energy function (E vib 835.0 kJ mol−1 (78.6°C), E 0 included). E kin for the crystal (771.1 kJ mol−1 (78.6°C)) was obtained by Debye’s theory with the experimental heat capacity. The cohesion energy represented a moderate part of the sublimation energy. The cohesion energy of the racemic crystal, −44.2 kJ mol−1, was obtained by the heat of formation of the crystal in the solid state (3.0 kJ mol−1, 83.3°C) and E kin for the crystal (by Debye’s theory). The decrease in cohesion on formation of the crystal accounted for the energy of formation. The change in potential energy on liquefaction of the racemate from the gas state was disclosed obtaining added-up E vib + rot for the liquid in the way as to E vib for the gas, the Debye entropy function being increasedly suited for the liquid (E vib + rot 763.4 kJ mol−1 (115.4°C)). Positive ΔE pot, 13.0 kJ mol−1, arised from the increase in electronic energy (Δ l νmean − 154.3 cm−1, by the dielectric nature of the liquid), added to the cohesion energy.  相似文献   

16.
Summary. The cohesion potential energy of the crystal of one enantiomer of ethyl 3-cyano-3-(3,4-dimethyloxyphenyl)-2,2,4-trimethylpentanoate, −47.7 ± 0.1 kJ mol−1 (0–90°C), was found out from the heat of sublimation (123.2 ± 5.1 kJ mol−1, 78.6°C) and the kinetic energies for the gas phase and the crystal. It was found that the entropy function of Debye’s theory of solids mathematically agreed with the vibrational entropy of the gas (variationally obtained), allowing to disclose the vibrational energy using the Debye energy function (E vib 835.0 kJ mol−1 (78.6°C), E 0 included). E kin for the crystal (771.1 kJ mol−1 (78.6°C)) was obtained by Debye’s theory with the experimental heat capacity. The cohesion energy represented a moderate part of the sublimation energy. The cohesion energy of the racemic crystal, −44.2 kJ mol−1, was obtained by the heat of formation of the crystal in the solid state (3.0 kJ mol−1, 83.3°C) and E kin for the crystal (by Debye’s theory). The decrease in cohesion on formation of the crystal accounted for the energy of formation. The change in potential energy on liquefaction of the racemate from the gas state was disclosed obtaining added-up E vib + rot for the liquid in the way as to E vib for the gas, the Debye entropy function being increasedly suited for the liquid (E vib + rot 763.4 kJ mol−1 (115.4°C)). Positive ΔE pot, 13.0 kJ mol−1, arised from the increase in electronic energy (Δ l νmean − 154.3 cm−1, by the dielectric nature of the liquid), added to the cohesion energy.  相似文献   

17.
Fursemide is the chemical compound 4-chloro-2-(furan-2-ylmethylamino)-5-(aminosulfonyl) benzoic acid. It was oxidized by diperiodatocuprate(III) in alkali solutions, and the oxidation products were identified as furfuraldehyde and 2-amino-4-chloro-5-(aminosulfonyl) benzoic acid. The reaction kinetics were studied spectrophotometrically. The reaction was observed to be first order in [oxidant] and fractional order each in [fursemide] and [periodate], whereas added alkali retarded the rate of reaction. The reactive form of the oxidant was inferred to be [Cu(H3IO6)2]. A mechanism consistent with the experimental results was proposed, in which oxidant interacts with the substrate to give a complex as a pre-equilibrium state. This complex decomposed in a slow step to give a free radical that was further oxidized by reaction with another molecule of DPC to yield 2-amino-4-chloro-5-(aminosulfonyl) benzoic acid and furfuraldehyde in a fast step. This reaction was studied at 25, 30, 35, 40 and 45 °C, and the activation parameters E aH #S # and ΔG # were determined to be 51 kJ⋅mol−1,48.5 kJ⋅mol−1,−63.5 J⋅K−1⋅mol−1 and 67 kJ⋅mol−1, respectively. The value of log 10 A was calculated to be 6.8.  相似文献   

18.
The binding of vitamin C, L-ascorbic acid (AsA), with human serum albumin (HSA) was investigated by various spectroscopic techniques under simulated physiological conditions. The fluorescence quenching constants (K SV) at four different temperatures (292, 298, 304, and 310 K) were obtained. The thermodynamic parameters ΔH and ΔS were calculated to be 6.02 kJ⋅mol−1 and 84.55 J⋅mol−1⋅K−1 using the van’t Hoff equation. Additional experiments to determine the stoichiometry (n) were carried out using isothermal titration calorimetry (ITC) and cyclic voltammetry (CV). The distance, r, between AsA and the tryptophan residues of HSA was calculated to be 3.7 nm according to F?rster’s non-radiation energy transfer theory. The effect of AsA on the conformation of HSA was studied by means of three dimensional fluorescence spectra and CD spectra. The results indicate that the presence of AsA resulted in a slight change of the HSA secondary structure. The effect of common ions on the binding of AsA to HSA was also examined.  相似文献   

19.
Results of solubility experiments involving crystalline nickel oxide (bunsenite) in aqueous solutions are reported as functions of temperature (0 to 350 °C) and pH at pressures slightly exceeding (with one exception) saturation vapor pressure. These experiments were carried out in either flow-through reactors or a hydrogen-electrode concentration cell for mildly acidic to near neutral pH solutions. The results were treated successfully with a thermodynamic model incorporating only the unhydrolyzed aqueous nickel species (viz., Ni2+) and the neutrally charged hydrolyzed species (viz., Ni(OH)20)\mathrm{Ni(OH)}_{2}^{0}). The thermodynamic quantities obtained at 25 °C and infinite dilution are, with 2σ uncertainties: log10Ks0o = (12.40 ±0.29),\varDeltarGmo = -(70. 8 ±1.7)\log_{10}K_{\mathrm{s0}}^{\mathrm{o}} = (12.40 \pm 0.29),\varDelta_{\mathrm{r}}G_{m}^{\mathrm{o}} = -(70. 8 \pm 1.7) kJ⋅mol−1; \varDeltarHmo = -(105.6 ±1.3)\varDelta_{\mathrm{r}}H_{m}^{\mathrm{o}} = -(105.6 \pm 1.3) kJ⋅mol−1; \varDeltarSmo = -(116.6 ±3.2)\varDelta_{\mathrm{r}}S_{m}^{\mathrm{o}} =-(116.6 \pm 3.2) J⋅K−1⋅mol−1; \varDeltarCp,mo = (0 ±13)\varDelta_{\mathrm{r}}C_{p,m}^{\mathrm{o}} = (0 \pm 13) J⋅K−1⋅mol−1; and log10Ks2o = -(8.76 ±0.15)\log_{10}K_{\mathrm{s2}}^{\mathrm{o}} = -(8.76 \pm 0.15); \varDeltarGmo = (50.0 ±1.7)\varDelta_{\mathrm{r}}G_{m}^{\mathrm{o}} = (50.0 \pm 1.7) kJ⋅mol−1; \varDeltarHmo = (17.7 ±1.7)\varDelta_{\mathrm{r}}H_{m}^{\mathrm{o}} = (17.7 \pm 1.7) kJ⋅mol−1; \varDeltarSmo = -(108±7)\varDelta_{\mathrm{r}}S_{m}^{\mathrm{o}} = -(108\pm 7) J⋅K−1⋅mol−1; \varDeltarCp,mo = -(108 ±3)\varDelta_{\mathrm{r}}C_{p,m}^{\mathrm{o}} = -(108 \pm 3) J⋅K−1⋅mol−1. These results are internally consistent, but the latter set differs from those gleaned from previous studies recorded in the literature. The corresponding thermodynamic quantities for the formation of Ni2+ and Ni(OH)20\mathrm{Ni(OH)}_{2}^{0} are also estimated. Moreover, the Ni(OH)3 -\mathrm{Ni(OH)}_{3}^{ -} anion was never observed, even in relatively strong basic solutions (mOH - = 0.1m_{\mathrm{OH}^{ -}} = 0.1 mol⋅kg−1), contrary to the conclusions drawn from all but one previous study.  相似文献   

20.
The standard (p o = 0.1 MPa) molar enthalpies of formation \Updelta\textf H\textm\texto ( \textl), {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{l),}} of the liquid 2-methylfuran, 5-methyl-2-acetylfuran and 5-methyl-2-furaldehyde were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of vaporization of the three compounds. The standard (p o = 0.1 MPa) molar enthalpies of formation of the compounds, in the gaseous phase, at T = 298.15 K have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of vaporization. The results obtained were −(76.4 ± 1.2), −(253.9 ± 1.9), and −(196.8 ± 1.8) kJ mol−1, for 2-methylfuran, 5-methyl-2-acetylfuran, and 5-methyl-2-furaldehyde, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号