首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Subsolidus phase relations in the Cs2MoO4-MMoO4-Zr(MoO4)2 (M = Mn, Zn) ternary systems were determined, and two groups of new isostructural triple molybdates were synthesized: Cs2MZr(MoO4)4 and Cs2MZr2(MoO4)6 (M = Mn, Mg, Co, Zn). Cs2MnZr2(MoO4)6 and Cs2MnZr(MoO4)4 crystals were grown by spontaneous flux crystallization and used in structure solution for both groups of compounds. The Cs2MnZr2(MoO4)6 structure (a =13.4322(2) ?, c = 12.2016(3) ?, group R3, Z = 3, R = 0.0367) is a new structure type characterized by a mixed three-dimensional framework built of corner-sharing MoO4 tetrahedra and (M, Zr)O6 octahedra where large channels are occupied by cesium cations. Cs2MnZr2(MoO4)4 (a =5.3890(1) ?, c = 8.0685(3) ?, space group P $ \bar 3 $ \bar 3 m1, Z = 0.5, R = 0.0247) has the layered glaserite-like KAl(MoO4)2 type structure, where Al3+ octahedral positions are randomly occupied by a 0.5M2+ + 0.5Zr4+ mixture.  相似文献   

2.
Triple molybdate NaCoCr(MoO4)3, a phase of variable composition Na2MoO4-CoMoO4-Cr2(MoO4)3 (0 ≤ x ≤ 0.5) having nasicon structure (space group R $ \bar 3 $ \bar 3 c), and triple molybdate NaCo3Cr(MoO4)5 crystallizing in triclinic space group P $ \bar 1 $ \bar 1 were synthesized in the subsolidus region of the Na2MoO4-CoMoO4-Cr2(MoO4)3 ternary salt system. Crystal parameters were calculated for the newly synthesized molybdates and phases. The vibration spectra of Na1 − x Co1 − x Cr1 + x (MoO4)3 and electrophysical properties were studied. Upon Na + Co → Cr(III) substitution, chromium cations are distributed to cobalt sites and additional vacancies are generated in the sodium sublattice.  相似文献   

3.
A new 3D coordination polymer, [LaAg(Pydc)(HPydc)(C2O4)0.5(H2O)2] n (I) (H2Pydc = pyridine-3,5-dicarboxylic acid), has been hydrothermally synthesized and characterized by elemental analyses and single crystal X-ray diffraction. The X-ray diffraction analysis reveals that I (C15H11AgLaN2O12) crystallizes in triclinic space group P $ \bar 1 $ \bar 1 and features an interesting 3D framework constructed by 2D layers via strong Ag-Ag interactions. Unit cell parameters for I (n = 1): a = 7.749(2), b = 8.316(1), c = 14.239(3) ?, α = 97.64(2)°, β = 100.12(2)°, γ = 94.37(2)°, and Z = 2.  相似文献   

4.
Interactions in the ternary system K2MoO4-Lu2(MoO4)3-Hf(MoO4)2 have been studied by X-ray powder diffraction and differential thermal analysis. A new triple (potassium lutetium hafnium) molybdate with the 5: 1: 2 stoichiometry has been found. Single crystals of this molybdate have been grown. Its X-ray diffraction structure has been refined (an X8 APEX automated diffractometer, MoK α radiation, 1960 F(hkl), R = 0.0166). The trigonal unit cell has the following parameters: a = 10.6536(1) ?, c = 37.8434(8) ?, V = 3719.75(9) ?, Z = 6, space group R c. The mixed 3D framework of the structure is built of Mo tetrahedra sharing corners with two independent (Lu,Hf)O6 octahedra. Two sorts of potassium atoms occupy large framework voids. Original Russian Text ? E.Yu. Romanova, B.G. Bazarov, R.F. Klevtsova, L.A. Glinskaya, Yu.L. Tushinova, K.N. Fedorov, Zh.G. Bazarova, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 5, pp. 815–818.  相似文献   

5.
Crystals of binary praseodymium and hafnium molybdate of Pr2Hf3(MoO4)9 composition are grown by solution-melt crystallization under spontaneous nucleation conditions. By the X-ray diffraction data (X8 Apex automated diffractometer, MoK α radiation, 2262 F(hkl), R = 0.0170) its composition and crystal structure are determined. Parameters of the trigonal unit cell are: a = b = 9.8001(1) ? c = 58.7095(8) ?, V = 4883.15(10) ?3, Z = 6, space group R c. The crystal structure is composed of three types of polyhedra: MoO4 tetrahedra, HfO6 octahedra, and nine-vertex PrO9. All three types of polyhedra are bonded among themselves by common oxygen vertices of bridging MoO4 tetrahedra forming an openwork three-dimensional structure. Original Russian Text Copyright ? 2009 by B. G. Bazarov, V. G. Grossman, R. F. Klevtsova, A. G. Anshits, T. A. Vereshchagina, L. A. Glinskaya, Yu. L. Tushinova, K. N. Fedorov, and Zh. G. Bazarova __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 3, pp. 587–590, May–June, 2009.  相似文献   

6.
Conditions of the hydrothermal synthesis of scandium hydrogen orthophosphate Li2Sc[H(PO4)2] (I) have been studied and the range of its monomineral crystallization have been determined. The existence of bound hydrogen in the structure has been confirmed by IR spectroscopy. The crystals of I are monoclinic: a = 4.857(1) ?, b = 8.198(2) ?, c = 7.664(2) ?, β = 104.097(5)°, space group P21/n, Z = 2. The structure was solved by direct methods and refined by full-matrix least-squares calculation in the anisotropic approximation for all non-hydrogen atoms, R obs = 0.0215, R wall = 0.0335 (705 reflections with I > 3σ(I)). The basis of the structure is a mixed anionic para-framework {Sc[H(PO4)2]}3∞2−, composed of vertex-sharing ScO6 octahedra and PO4 tetrahedra. The structural unit of the para-framework is the microblock [ScP6O24] with symmetry $ \bar 1 $ \bar 1 . The microblocks are condensed in columns running in the [100] direction to form through channels filled with Li+ cations (CN = 5). A model with splitting of the hydrogen atom position implying the formation of a strong asymmetric nonlinear H-bond has been suggested and considered. The compound is stable to 400°C. The results of studying compound I are presented together with the data on the Fe- and In-containing Li2MIII[H(PO4)2] analogues.  相似文献   

7.
Physicochemical analysis (XRPA, DTA) was used to study phase equilibria in a ternary salt system Rb2MoO4-Fe2(MoO4)3-Hf(MoO4)2 in the subsolidus region. Ternary molybdates with compositions 5:1:3, 5:1:2, and 1:1:1 have been found and synthesized. Crystal and thermal characteristics have been determined. Single crystals of the ternary molybdate Rb5FeHf(MoO4)6 with a composition of 5:1:2 were grown. The crystal structure of the compound was solved using X-ray diffractometry (CAD-4 automatic diffractometer, MoK α radiation, 1766 F(hkl), R = 0.0298). Hexagonal crystals with unit cell dimensions: a = b = 10.124(1) Å, c =15.135(3) Å, V = 1343.4(4) Å3, Z = 2, ρcalc = 4.008 g/cm3, space group P63. The mixed three-dimensional framework of the structure is formed from two sorts of MoO4 tetrahedra and Fe and Hf octahedra linked through their common O-vertices. Rubidium atoms of three varieties occupy the large voids of the framework.Original Russian Text Copyright © 2004 by B. G. Bazarov, R. F. Klevtsova, A. D. Tsyrendorzhieva, L. A. Glinaskaya, and Zh. G. Bazarova__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 6, pp. 1038–1043, November–December, 2004.  相似文献   

8.
Phase relations have been investigated in the subsolidus region of the Na2MoO4-NiMoO4-Fe2(MoO4)3 system by X-ray diffraction, differential thermal analysis, and vibrational spectroscopy. The phase of variable composition Na1−x Ni1−x Fe1+x (MoO4)3(0≤x≤0.5) with the NASICON structure (space group R c) and the NaNi3Fe(MoO4)5 ternary molybdate crystallizing in the triclinic crystal system (space group P ) have been obtained. A high conductivity was found in Na1−x Ni1−x Fe1+x (MoO4)3, which allows one to consider this phase of variable composition as a promising solid electrolyte with sodium ion conduction. Original Russian Text ? N.M. Kozhevnikova, A.V. Imekhenova, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 4, pp. 695–700.  相似文献   

9.
Single crystals of LiCr(MoO4)2, Li3Cr(MoO4)3 and Li1.8Cr1.2(MoO4)3 were grown by a flux method during the phase study of the Li2MoO4-Cr2(MoO4)3 system at 1023 K. LiCr(MoO4)2 and Li3Cr(MoO4)3 single phases were synthesized by solid-state reactions. Li3Cr(MoO4)3 adopts the same structure type as Li3In(MoO4)3 despite the difference in ionic radii of Cr3+ and In3+ for octahedral coordination. Li3Cr(MoO4)3 is paramagnetic down to 7 K and shows a weak ferromagnetic component below this temperature. LiCr(MoO4)2 is isostructural with LiAl(MoO4)2 and orders antiferromagnetically below 20 K. The magnetic structure of LiCr(MoO4)2 was determined from low-temperature neutron diffraction and is based on the propagation vektor . The ordered magnetic moments were refined to 2.3(1) μB per Cr-ion with an easy axis close to the [1 1 1¯] direction. A magnetic moment of 4.37(3) μB per Cr-ion was calculated from the Curie constant for the paramagnetic region.The crystal structures of the hitherto unknown Li1.8Cr1.2(MoO4)3 and LiCr(MoO4)2 are compared and reveal a high degree of similarity: In both structures MoO4-tetrahedra are isolated from each other and connected with CrO6 and LiO5 via corners. In both modifications there are Cr2O10 fragments of edge-sharing CrO6-octahedra.  相似文献   

10.
Flower-like NaY(MoO4)2 particles were synthesized through a microwave-assisted hydrother-mal process followed by a subsequent calcination process. The products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron mi-croscopy. The possible formation mechanism of the flower-like NaY(MoO4)2 precursor was proposed. The NaY(MoO4)2:Eu3+ phosphors were also prepared and their luminescence properties showed the NaY(MoO4)2:Eu3+ materials with the emission peak at 612 nm had potential application as a red phosphor for white light-emitting diodes. Furthermore, the microwave-assisted hydrothermal process followed by a subsequent calcination process could be extended to prepare the other lanthanide molybdates with the flower-like morphology.  相似文献   

11.
Single crystals of (CN3H6)2[(UO2)2(C2O4)(SeO3)2] were synthesized and studied by IR spectroscopy and X-ray diffraction. The compound crystallizes in the triclinic system with the unit cell parameters a = 7.1169(12) ?, b = 7.4874(10) ?, c = 8.9748(14) ?, α = 88.243(6)°, β = 74.546(6)°, γ = 81.445(6)°, space group P[`1]P\bar 1, Z = 1, R = 0.0304. The main structural units of the crystals are layers of the [(UO2)2(C2O4)(SeO3)2]2− composition; the layers belong to the crystal chemical group A 2 K 02 T 23 (A = UO22+ K 02 = C2O42−, T 3 = SeO3) of uranyl complexes. Uranium-containing complex groups are linked by electrostatic interactions and a network of hydrogen bonds with CN3H6+ guanidinium ions to form a three-dimensional framework.  相似文献   

12.
Colorless crystals of CsTh(MoO4)2Cl and Na4Th(WO4)4 have been synthesized at 993 K by the solid-state reactions of ThO2, MoO3, CsCl, and ThCl4 with Na2WO4. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO4)2Cl is orthorhombic, consisting of two adjacent [Th(MoO4)2] layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO4)2 and reformulated as Th(MoO4)2·CsCl. The Th atom coordinates to seven monodentate MoO4 tetrahedra and one Cl atom in a highly distorted square antiprism. Na4Th(WO4)4 adopts a scheelite superlattice structure. The three-dimensional framework of Na4Th(WO4)4 is constructed from corner-sharing ThO8 square antiprisms and WO4 tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO4)2Cl, monoclinic, P21/c, Z=4, a=10.170(1) Å, b=10.030(1) Å, c=9.649(1) Å, β=95.671(2)°, V=979.5(2) Å3, R(F)=2.65% for I>2σ(I); Na4Th(WO4)4, tetragonal, I41/a, Z=4, a=11.437(1) Å, c=11.833(2) Å, V=1547.7(4) Å3, R(F)=3.02% for I>2σ(I).  相似文献   

13.
The [Ni(DDM)2(NO3)2(H2O)2] complex (DDM is 4,4-diaminodiphenylmethane [CH2(C6H4NH2)2]) is synthesized, and its structure is determined. The crystals are triclinic, space group P , a = 5.846(1) ?, b = 9.450(2) ?, c = 13.390(3) ?, α = 105.63(3)°, β = 98.13(3)°, γ = 105.84(3)°, V = 666.6(2) ?3, ρcalcd = 1.553 g/cm3, Z = 2. The Ni(II) ion (in the inversion center) is bound to a distorted octahedral array formed by the nitrogen atoms of the primary amino groups of the DDM molecules and the oxygen atoms of the monodentate nitrato groups and water molecules (Ni(1)-N(3) 2.119(2) ?, Ni(1)-O(1) 2.122(2) ?, Ni(1)-O(w) 2.047(2) ?, angles at the Ni atoms vary in the 85.08(9)°–94.92(9)° interval). The structure contains supramolecular metallacycles formed by the O(w)-H…N(2) hydrogen bonds between the coordinated H2O molecules and the terminal amino groups of DDM. The metallacycles are joined by the Ni2+ ions into infinite chains running in the [111] direction. Original Russian Text ? Yu.V. Kokunov, V.V. Kovalev, Yu.E. Gorbunova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 11, pp. 1838–1843.  相似文献   

14.
Single crystals of diammonium tetranitratouranylate (NH4)2[UO2(NO3)4] (I) and a new diammonium tetranitratouranylate complex with 18-crown-6 [(NH4)(18C6)]2[UO2(NO3)4] (II) have been synthesized by the reaction of diaquadinitratouranyl tetrahydrate with ammonium nitrate in a nitric acid solution and the reaction of the same reagents with 18C6 in an ethanol solution, respectively. The X-ray diffraction analysis of compounds I and II has been performed. Crystals of compounds I and II are monoclinic, Z = 2, space group P21/n, a = 6.4075(5) ?, b = 7.7851(7) ?, c = 12.4461(12) ?, β = 101.239(1)°, V = 608. 94(9) ?3 for compound I and a = 10.542(9) ?, b = 8.590(8) ?, c = 22.5019(19) ?, β = 101.632(1)°, V = 2058.3(3) ?3 for compound II. The [UO2(NO3)4]2− complex anion in compounds I and II contains two monodentate and two bidentate cyclic nitrato groups, and the coordination number of uranyl is 6. The 18C6 molecule in the structure of compound II has the classic crown conformation and combined with the ammonium ion by three hydrogen bonds. Compounds I and II formed by electrostatic attraction forces between counterions are stabilized by (NH4+)NH...O(NO3) interionic hydrogen bonds.  相似文献   

15.
A single crystal X-ray diffraction study is carried out for [Pd(P(i-Pr)3)2(acac)]BF4, T = 150(2) K. Crystal data: a = 10.2935(4) ?, b = 11.3591(5) ?, c = 13.8728(6) ?, α = 89.154(2)°, β = 68.448(1)°, γ = 85.032(1)°, P-1 space group, V = 1502.75(11) ?3, Z = 2, d x = 1.354 g/cm3.  相似文献   

16.
The subsolidus region of the Cs2MoO4-Bi2(MoO4)3-Zr(MoO4) system was studied by X-ray powder diffraction. Quasi-binary sections were elucidated, and triangulation performed. Triple molybdates with the component ratios 5: 1: 2 (S 1) and 2: 1: 4 (S 2) were prepared for the first time. Crystals of cesium bismuth zirconium molybdate of the 5: 1: 2 stoichiometry (Cs5BiZr(MoO4)6) were grown from fluxed melts with spontaneous nucleation. The composition and crystal structure of this triple molybdate were refined using X-ray diffraction data (collected on X8 APEX automated diffractometer, MoK α radiation, 2348 F(hkl), R = 0.0226). The trigonal unit cell parameters were as follows: a = b = 10.9569(2), c = 39.804(4) Å, V = 4138.4(4) Å3, Z = 6, space group R $ \bar 3 The subsolidus region of the Cs2MoO4-Bi2(MoO4)3-Zr(MoO4) system was studied by X-ray powder diffraction. Quasi-binary sections were elucidated, and triangulation performed. Triple molybdates with the component ratios 5: 1: 2 (S 1) and 2: 1: 4 (S 2) were prepared for the first time. Crystals of cesium bismuth zirconium molybdate of the 5: 1: 2 stoichiometry (Cs5BiZr(MoO4)6) were grown from fluxed melts with spontaneous nucleation. The composition and crystal structure of this triple molybdate were refined using X-ray diffraction data (collected on X8 APEX automated diffractometer, MoK α radiation, 2348 F(hkl), R = 0.0226). The trigonal unit cell parameters were as follows: a = b = 10.9569(2), c = 39.804(4) ?, V = 4138.4(4) ?3, Z = 6, space group R c. The mixed-metal three-dimensional framework in this structure is built of Mo tetrahedra and two sorts of (Bi,Zr)O6 octahedra. Large interstices accommodate two sorts of cesium atoms. The Bi3+ and Zr4+ cation distributions over two positions were refined during structure solution. Original Russian Text ? B.G. Bazarov, T.V. Namsaraeva, R.F. Klevtsova, A.G. Anshits, T.A. Vereshchagina, R.V. Kurbatov, L.A. Glinskaya, K.N. Fedorov, Zh.G. Bazarova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 9, pp. 1585–1589.  相似文献   

17.
用液相反应-前驱物烧结法制备了Cr2(WO4)3和Cr2(MoO4)3粉体。298~1 073 K的原位粉末X射线衍射数据表明Cr2(WO4)3和Cr2(MoO4)3的晶胞体积随温度的升高而增大, 本征线热膨胀系数分别为(1.274±0.003)×10-6 K-1和(1.612±0.003)×10-6 K-1。用热膨胀仪研究了Cr2(WO4)3和Cr2(MoO4)3在静态空气中298~1 073 K范围内热膨胀行为,即开始表现为正热膨胀,随后在相转变点达到最大值,最后表现为负热膨胀,其负热膨胀系数分别为(-7.033±0.014)×10-6 K-1和(-9.282±0.019)×10-6 K-1。  相似文献   

18.
Two new potassium uranyl molybdates K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6 have been obtained by solid state chemistry . The crystal structures were determined by single crystal X-ray diffraction data, collected with MoKα radiation and a charge coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least square method on the basis of F2 for all unique reflections, with R1=0.046 for 136 parameters and 1412 reflections with I?2σ(I) for K2(UO2)2(MoO4)O2 and R1=0.055 for 257 parameters and 2585 reflections with I?2σ(I) for K8(UO2)8(MoO5)3O6. The first compound crystallizes in the monoclinic symmetry, space group P21/c with a=8.250(1) Å, b=15.337(2) Å, c=8.351(1) Å, β=104.75(1)°, ρmes=5.22(2) g/cm3, ρcal=5.27(2) g/cm3 and Z=4. The second material adopts a tetragonal unit cell with a=b=23.488(3) Å, c=6.7857(11) Å, ρmes=5.44(3) g/cm3, ρcal=5.49(2) g/cm3, Z=4 and space group P4/n.In both structures, the uranium atoms adopt a UO7 pentagonal bipyramid environment, molybdenum atoms are in a MoO4 tetrahedral environment for K2(UO2)2(MoO4)O2 and MoO5 square pyramid coordination in K8(UO2)8(MoO5)3O6. These compounds are characterized by layered structures. The association of uranyl ions (UO7) and molybdate oxoanions MoO4 or MoO5, give infinite layers [(UO2)2(MoO4)O2]2− and [(UO2)8(MoO5)3O6]8− in K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6, respectively. Conductivity properties of alkali metal within the interlayer spaces have been measured and show an Arrhenius type evolution.  相似文献   

19.
The sodium hydrogen oxovanadate [Na2(H2O)8] 2H2[V10O28] · 4H2O was synthesized and studied by TGA, X-ray diffraction, and NMR and IR spectroscopy. The crystals are triclinic, space group P $ \bar 1 $ \bar 1 , a = 8.545(7) ?, b = 10.827(2) ?, c = 11.627(2) ?, α = 105.48(3)°, β = 99.38(3)°, γ = 101.29(3)°, V = 989.9(3) ?3, ρ(calcd) = 2,381 g/cm3, Z= 1.  相似文献   

20.
Studies on the kinetics and mechanism of the reaction leading to Cr2(MoO4)3 have been made using X-ray diffraction and infrared spectroscopy. The apparent activation energy, E=285±22 kJ/mol has been calculated, based on the Ginstling-Brounstein diffusion controlled model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号