首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Binding affinity prediction is frequently addressed using computational models constructed solely with molecular structure and activity data. We present a hybrid structure-guided strategy that combines molecular similarity, docking, and multiple-instance learning such that information from protein structures can be used to inform models of structure–activity relationships. The Surflex-QMOD approach has been shown to produce accurate predictions of binding affinity by constructing an interpretable physical model of a binding site with no experimental binding site structural information. We introduce a method to integrate protein structure information into the model induction process in order to construct more robust physical models. The structure-guided models accurately predict binding affinities over a broad range of compounds while producing more accurate representations of the protein pockets and ligand binding modes. Structure-guidance for the QMOD method yielded significant performance improvements, both for affinity and pose prediction, especially in cases where predictions were made on ligands very different from those used for model induction.  相似文献   

2.
Surflex-QMOD integrates chemical structure and activity data to produce physically-realistic models for binding affinity prediction. Here, we apply QMOD to a 3D-QSAR benchmark dataset and show broad applicability to a diverse set of targets. Testing new ligands within the QMOD model employs automated flexible molecular alignment, with the model itself defining the optimal pose for each ligand. QMOD performance was compared to that of four approaches that depended on manual alignments (CoMFA, two variations of CoMSIA, and CMF). QMOD showed comparable performance to the other methods on a challenging, but structurally limited, test set. The QMOD models were also applied to test a large and structurally diverse dataset of ligands from ChEMBL, nearly all of which were synthesized years after those used for model construction. Extrapolation across diverse chemical structures was possible because the method addresses the ligand pose problem and provides structural and geometric means to quantitatively identify ligands within a model’s applicability domain. Predictions for such ligands for the four tested targets were highly statistically significant based on rank correlation. Those molecules predicted to be highly active (\(\hbox {pK}_i \ge 7.5\)) had a mean experimental \(\hbox {pK}_i\) of 7.5, with potent and structurally novel ligands being identified by QMOD for each target.  相似文献   

3.
4.
Molecular aggregation state of bioactive compounds plays a key role in bio‐interactive procedure. Diverse aggregation states of bioactive compounds contribute to different biological or chemical properties. Water‐bridge, as the simple hetero‐molecular aggregation, has been found bridging the binding between many bioactive compounds and their targets through hydrogen bonding network, e.g. in the recognition of neonicotinoids with insect nAChRs. To better understanding the roles of water‐bridge on bioactivities of compounds, an approach of hetero‐dimeric aggregation with water was proposed. Quantitative structure‐activity relationship (QSAR) and pharmacophore modeling investigations were applied on 19 neonicotinoids, as well as their aggregates with water. The aggregate‐based CoMSIA, PHASE and linear QSAR models presented better statistical significance and predictabilities than the monomer ones, which indicated that the bioactivities correlated with the aggregate properties and water bridged hydrogen bond of the active site. All results revealed the essential roles of water‐bridge in ligand recognition, which should be considered in future ligand design and optimization.  相似文献   

5.
We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.  相似文献   

6.
Zinc‐dependent matrix metalloproteinase (MMP) family is considered to be an attractive target because of its important role in many physiological and pathological processes. In the present work, a molecular modeling study combining protein‐, ligand‐ and complex‐based computational methods was performed to analyze a new series of β‐N‐biaryl ether sulfonamide hydroxamates as potent inhibitors of gelatinase A (MMP‐2) and gelatinase B (MMP‐9). Firstly, the similarities and differences between the binding sites of MMP‐2 and MMP‐9 were analyzed through sequence alignment and structural superimposition. Secondly, in order to extract structural features influencing the activities of these inhibitors, quantitative structure‐activity relationship (QSAR) models using genetic algorithm‐multiple linear regression (GA‐MLR), comparative molecular field (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were developed. The proposed QSAR models could give good predictive ability for the studied inhibitors. Thirdly, docking study was employed to further explore the binding mode between the ligand and protein. The results from all the above analyses could provide the information about the similarities and differences of the binding mode between the MMP‐2, MMP‐9 and their potent inhibitors. The obtained results can provide very useful information for the design of new potential inhibitors. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

7.
In the field of drug discovery, it is important to accurately predict the binding affinities between target proteins and drug applicant molecules. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics‐based force fields, although they cannot fully describe protein–ligand interactions. A noteworthy computational method in development involves large‐scale electronic structure calculations. Fragment molecular orbital (FMO) method, which is one of such large‐scale calculation techniques, is applied in this study for calculating the binding energies between proteins and ligands. By testing the effects of specific FMO calculation conditions (including fragmentation size, basis sets, electron correlation, exchange‐correlation functionals, and solvation effects) on the binding energies of the FK506‐binding protein and 10 ligand complex molecule, we have found that the standard FMO calculation condition, FMO2‐MP2/6‐31G(d), is suitable for evaluating the protein–ligand interactions. The correlation coefficient between the binding energies calculated with this FMO calculation condition and experimental values is determined to be R = 0.77. Based on these results, we also propose a practical scheme for predicting binding affinities by combining the FMO method with the quantitative structure–activity relationship (QSAR) model. The results of this combined method can be directly compared with experimental binding affinities. The FMO and QSAR combined scheme shows a higher correlation with experimental data (R = 0.91). Furthermore, we propose an acceleration scheme for the binding energy calculations using a multilayer FMO method focusing on the protein–ligand interaction distance. Our acceleration scheme, which uses FMO2‐HF/STO‐3G:MP2/6‐31G(d) at Rint = 7.0 Å, reduces computational costs, while maintaining accuracy in the evaluation of binding energy. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
We introduce the QuanSA method for inducing physically meaningful field-based models of ligand binding pockets based on structure-activity data alone. The method is closely related to the QMOD approach, substituting a learned scoring field for a pocket constructed of molecular fragments. The problem of mutual ligand alignment is addressed in a general way, and optimal model parameters and ligand poses are identified through multiple-instance machine learning. We provide algorithmic details along with performance results on sixteen structure-activity data sets covering many pharmaceutically relevant targets. In particular, we show how models initially induced from small data sets can extrapolatively identify potent new ligands with novel underlying scaffolds with very high specificity. Further, we show that combining predictions from QuanSA models with those from physics-based simulation approaches is synergistic. QuanSA predictions yield binding affinities, explicit estimates of ligand strain, associated ligand pose families, and estimates of structural novelty and confidence. The method is applicable for fine-grained lead optimization as well as potent new lead identification.  相似文献   

9.
10.
The success of ligand docking calculations typically depends on the quality of the receptor structure. Given improvements in protein structure prediction approaches, approximate protein models now can be routinely obtained for the majority of gene products in a given proteome. Structure‐based virtual screening of large combinatorial libraries of lead candidates against theoretically modeled receptor structures requires fast and reliable docking techniques capable of dealing with structural inaccuracies in protein models. Here, we present Q‐DockLHM, a method for low‐resolution refinement of binding poses provided by FINDSITELHM, a ligand homology modeling approach. We compare its performance to that of classical ligand docking approaches in ligand docking against a representative set of experimental (both holo and apo) as well as theoretically modeled receptor structures. Docking benchmarks reveal that unlike all‐atom docking, Q‐DockLHM exhibits the desired tolerance to the receptor's structure deformation. Our results suggest that the use of an evolution‐based approach to ligand homology modeling followed by fast low‐resolution refinement is capable of achieving satisfactory performance in ligand‐binding pose prediction with promising applicability to proteome‐scale applications. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

11.
Inspired by the concept of knowledge-based scoring functions, a new quantitative structure-activity relationship (QSAR) approach is introduced for scoring protein-ligand interactions. This approach considers that the strength of ligand binding is correlated with the nature of specific ligand/binding site atom pairs in a distance-dependent manner. In this technique, atom pair occurrence and distance-dependent atom pair features are used to generate an interaction score. Scoring and pattern recognition results obtained using Kernel PLS (partial least squares) modeling and a genetic algorithm-based feature selection method are discussed.  相似文献   

12.
13.
Summary Quantitative structure-activity relationships (QSARs) for 16 azoxy compounds with antifungal activity have been studied by the combined approach of a partial least-squares method and factorial design. The PLS model equation suggested the structural requirements of two substituents, R1 and R2, for the antifungal activity. The sterically bulky and hydrophobic R1 substituents and electron-withdrawing R2 substituents are favorable for the activity. We propose candidate compounds which are more potent than the compounds based on QSAR data. In this study, we show that the chemometric approach is a powerful tool for QSAR studies and drug design.Abbreviations PLS partial least squares - FD factorial design - MLR multiple linear regression - PPs principal properties  相似文献   

14.
15.
BACKGROUND: The development of estrogen pharmaceutical agents with appropriate tissue-selectivity profiles has not yet benefited substantially from the application of combinatorial synthetic approaches to the preparation of structural classes that are known to be ligands for the estrogen receptor (ER). We have developed an estrogen pharmacophore that consists of a simple heterocyclic core scaffold, amenable to construction by combinatorial methods, onto which are appended 3-4 peripheral substituents that embody substructural motifs commonly found in nonsteroidal estrogens. The issue addressed here is whether these heterocyclic core structures can be used to prepare ligands with good affinity for the ER. RESULTS: We prepared representative members of various azole core structures. Although members of the imidazole, thiazole or isoxazole classes generally have weak binding for the ER, several members of the pyrazole class show good binding affinity. The high-affinity pyrazoles bear close conformational relationship to the nonsteroidal ligand raloxifene, and they can be fitted into the ligand-binding pocket of the ER-raloxifene X-ray structure. CONCLUSIONS: Compounds such as these pyrazoles, which are novel ER ligands, are well suited for combinatorial synthesis using solid-phase methods.  相似文献   

16.
The fast Fourier transform (FFT) sampling algorithm has been used with success in application to protein‐protein docking and for protein mapping, the latter docking a variety of small organic molecules for the identification of binding hot spots on the target protein. Here we explore the local rather than global usage of the FFT sampling approach in docking applications. If the global FFT based search yields a near‐native cluster of docked structures for a protein complex, then focused resampling of the cluster generally leads to a substantial increase in the number of conformations close to the native structure. In protein mapping, focused resampling of the selected hot spot regions generally reveals further hot spots that, while not as strong as the primary hot spots, also contribute to ligand binding. The detection of additional ligand binding regions is shown by the improved overlap between hot spots and bound ligands. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Quantitative structure–activity relationship (QSAR), a regression modeling methodology that establishes statistical correlation between structure feature and apparent behavior for a series of congeneric molecules quantitatively, has been widely used to evaluate the activity, toxicity and property of various small-molecule compounds such as drugs, toxicants and surfactants. However, it is surprising to see that such useful technique has only very limited applications to biomacromolecules, albeit the solved 3D atom-resolution structures of proteins, nucleic acids and their complexes have accumulated rapidly in past decades. Here, we present a proof-of-concept paradigm for the modeling, prediction and interpretation of the binding affinity of 144 sequence-nonredundant, structure-available and affinity-known protein complexes (Kastritis et al. Protein Sci 20:482–491, 2011) using a biomacromolecular QSAR (BioQSAR) scheme. We demonstrate that the modeling performance and predictive power of BioQSAR are comparable to or even better than that of traditional knowledge-based strategies, mechanism-type methods and empirical scoring algorithms, while BioQSAR possesses certain additional features compared to the traditional methods, such as adaptability, interpretability, deep-validation and high-efficiency. The BioQSAR scheme could be readily modified to infer the biological behavior and functions of other biomacromolecules, if their X-ray crystal structures, NMR conformation assemblies or computationally modeled structures are available.  相似文献   

18.
On the basis of systematic modification of the structure of componds of antiepilepsirine type, more than 200 cinnamamides were synthesized and tested by animal assay (maximal electroshock seizure, MES). Pharmacological evaluation showed that the configuration and the substituents on the phenyl ring and the nitrogen of amides, and substituents on the double bond displayed an important effect on the anticonvulsant activity.For studying the effect of the modification of structure to anticonvulsant activity, Hansch approach was employed to study the QSAR among 38 cinnamamides, and Hopfinger' s MSA was employed to study the MSA-QSAR among 26 cinnamamides.  相似文献   

19.
20.
We present a series of molecular‐mechanics‐based protein refinement methods, including two novel ones, applied as part of an induced fit docking procedure. The methods used include minimization; protein and ligand sidechain prediction; a hierarchical ligand placement procedure similar to a‐priori protein loop predictions; and a minimized Monte Carlo approach using normal mode analysis as a move step. The results clearly indicate the importance of a proper opening of the active site backbone, which might not be accomplished when the ligand degrees of freedom are prioritized. The most accurate method consisted of the minimized Monte Carlo procedure designed to open the active site followed by a hierarchical optimization of the sidechain packing around a mobile flexible ligand. The methods have been used on a series of 88 protein‐ligand complexes including both cross‐docking and apo‐docking members resulting in complex conformations determined to within 2.0 Å heavy‐atom RMSD in 75% of cases where the protein backbone rearrangement upon binding is less than 1.0 Å α‐carbon RMSD. We also demonstrate that physics‐based all‐atom potentials can be more accurate than docking‐style potentials when complexes are sufficiently refined. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号