首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study in 2-dimensions the superfluid density of periodically modulated states in the framework of the mean-field Gross-Pitaevskiǐ model of a quantum solid. We obtain a full agreement for the superfluid fraction between a semi-theoretical approach and direct numerical simulations. As in 1-dimension, the superfluid density decreases exponentially with the amplitude of the particle interaction. We discuss the case when defects are present in this modulated structure. In the case of isolated defects (e.g. dislocations) the superfluid density only shows small changes. Finally, we report an increase of the superfluid fraction up to 50% in the case of extended macroscopical defects. We show also that this excess of superfluid fraction depends on the length of the complex network of grain boundaries in the system.  相似文献   

2.
We investigate the effects of a movable mirror (cantilever) of an optical cavity on the superfluid properties and the Mott phase boundary of a Bose-Einstein condensate (BEC) in an optical lattice. The Bloch energy, effective mass, Bogoliubov energy and the superfluid fraction are modified due to the mirror motion. The mirror motion is also found to modify the Mott-superfluid phase boundaries. This study reveals that the mirror emerges as a new handle to coherently control the superfluid properties of the BEC.  相似文献   

3.
We analyze the dynamics of a condensate of ultracold atomic fermions following an abrupt change of the pairing strength. At long times, the system goes to a nonstationary steady state, which we determine exactly. The superfluid order parameter asymptotes to a constant value. We show that the order parameter vanishes when the pairing strength is decreased below a certain critical value. In this case, the steady state of the system combines properties of normal and superfluid states -- the gap and the condensate fraction vanish, while the superfluid density is nonzero.  相似文献   

4.
Atoms trapped in micro-cavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We do the quantum field theoretical study of such a system using the Abelian bosonization method followed by the renormalization group analysis. An infinite order Berezinskii-Kosterliz-Thouless transition is replaced by second order XY transition even when an infinitesimal anisotropy in exchange coupling is introduced. We predict a quantum phase transition between the photonic Coulomb blocked induce Mott insulating and photonic superfluid phases due to detuning between the cavity and laser frequency. A large detuning favors the photonic superfluid phase. We also perform the analysis of Jaynes and Cumming Hamiltonian to support the results of quantum field theoretical study.  相似文献   

5.
We study the effect of a one dimensional optical lattice in a cavity field with quantum properties on the superfluid dynamics of a Bose-Einstein condensate (BEC). In the cavity the influence of atomic backaction and the external driving pump become important and modify the optical potential. Due to the coupling between the condensate wavefunction and the cavity modes, the cavity light field develops a band structure. This study reveals that the pump and the cavity emerges as a new handle to control the superfluid properties of the BEC.  相似文献   

6.
We study the effect of a one dimensional optical superlattice on the superfluid properties (superfluid fraction, number squeezing, dynamic structure factor) and the quasi-momentum distribution of the Mott-insulator. We show that due to the secondary lattice, there is a decrease in the superfluid fraction and the number fluctuation. The dynamic structure factor which can be measured by Bragg spectroscopy is also suppressed due to the addition of the secondary lattice. The visibility of the interference pattern (the quasi-momentum distribution) of the Mott-insulator is found to decrease due to the presence of the secondary lattice. Our results have important implications in atom interferometry and quantum computation in optical lattices.  相似文献   

7.
We investigate the BCS-BEC crossover in three-dimensional degenerate Fermi gases in the presence of spin-orbit coupling (SOC) and Zeeman field. We show that the superfluid order parameter destroyed by a large Zeeman field can be restored by the SOC. With increasing strengths of the Zeeman field, there is a series of topological quantum phase transitions from a nontopological superfluid state with fully gapped fermionic spectrum to a topological superfluid state with four topologically protected Fermi points (i.e., nodes in the quasiparticle excitation gap) and then to a second topological superfluid state with only two Fermi points. The quasiparticle excitations near the Fermi points realize the long-sought low-temperature analog of Weyl fermions of particle physics. We show that the topological phase transitions can be probed using the experimentally realized momentum-resolved photoemission spectroscopy.  相似文献   

8.
We investigate the ground-state properties of an attractively interacting degenerate Fermi gas coupling with a high-finesse optical cavity. We predict a new mixed phase with both the superfluid and superradiant properties for the intermediate fermion-fermion interaction and fermion-photon coupling strengths. Moreover, in this mixed phase a relatively large ratio of the scaled polarization to the dimensionless mean-field gap, which is in contrast to that in the conventional superfluid regime can be obtained. We also figure out rich phase diagrams depending crucially on the atomic resonant frequency (effective Zeeman field) and address briefly the experimental detection of our predicted quantum phases.  相似文献   

9.
We realize a single-band 2D Bose-Hubbard system with Rb atoms in an optical lattice and measure the condensate fraction as a function of lattice depth, crossing from the superfluid to the Mott-insulating phase. We quantitatively identify the location of the superfluid to normal transition by observing when the condensed fraction vanishes. Our measurement agrees with recent quantum Monte Carlo calculations for a finite-sized 2D system to within experimental uncertainty.  相似文献   

10.
We study two coupled cavities, each of which contains two two-level atoms. We identify the regions of Mott-insulator and superfluid states. Ground-state entanglement of two atoms in one cavity has been investigated. The result show that quantum entanglement of two atoms within one cavity can also characterize quantum phase transition.  相似文献   

11.
We report the first measurements of the A-B phase transition of superfluid 3He confined within 98% silica aerogel in high magnetic fields and low temperatures. A disk of aerogel is attached to a vibrating wire resonator. The resonant frequency yields a measure of the superfluid fraction rho(s)/rho of the 3He within the aerogel. The inferred rho(s)/rho value increases substantially at the A-to- B transition of the confined superfluid, allowing us to map the A-B phase diagram as a function of field and temperature. At 4.8 bars, the B-T transition curve looks very similar to that in bulk with a simple reduction factor of order 0.45 for both transition field and temperature.  相似文献   

12.
熊芳  冯晓强  谭磊 《物理学报》2016,65(4):44205-044205
基于准玻色方法, 利用平均场理论解析求解了环境作用下双光子过程耦合腔阵列体系的哈密顿量, 得到了体系序参量的解析表达式, 并讨论了耗散对体系超流-Mott绝缘相变的影响. 研究结果表明: 双光子共振情况下系统重铸相干的腔间耦合率临界值为(ZJ/β)= (ZJ/β)c'≈ 0.34;双光子相互作用过程比单光子过程具有更大的耗散率, 系统维持长程相干状态的时间更短, 而实现重铸相干的腔间耦合率的临界值更大.  相似文献   

13.
We report on the observation of an anomalously high damping measured by a vibrating-wire resonator (VWR) immersed into superfluid at ultralow temperatures. The observed dissipation is orders of magnitude above that corresponding to friction with the dilute normal fraction and superfluid vortices. A clear pinning behavior is also observed, as well as a strong magnetic field dependence. Our analysis points to the interaction of the VWR with a planar topological defect, analogue to cosmological vacua defects, as proposed by Salomaa and Volovik.  相似文献   

14.
We investigate the ground state properties of a disordered superfluid Fermi gas across the BCS-BEC (Bose-Einstein condensate) crossover. We show that, for weak disorder, both the depletion of the condensate fraction of pairs and the normal fluid density exhibit a nonmonotonic behavior as a function of the interaction parameter 1/k{F}a, reaching their minimum value near unitarity. We find that, moving away from the weak-coupling BCS regime, Anderson's theorem ceases to apply and the superfluid order parameter is more and more affected by the random potential.  相似文献   

15.
In this Letter we study both ground state properties and the superfluid transition temperature of a spin-1/2 Fermi gas across a Feshbach resonance with a synthetic spin-orbit coupling, using the mean-field theory and the exact solution of two-body problem. We show that a strong spin-orbit coupling can significantly enhance the pairing gap for negative scattering length a(s), due to increased density of state at Fermi surface. Strong spin-orbit coupling can also significantly enhance the superfluid transition temperature Tc to a sizable fraction of Fermi temperature when a(s) ≤ 0, while it suppresses Tc slightly for positive a(s). The interaction energy and pair size at resonance are also discussed.  相似文献   

16.
We report measurements of the superfluid fraction ρ_{s}/ρ and specific heat c_{p} near the superfluid transition of ^{4}He when confined in an array of (2 μm)^{3} boxes at a separation of S=2 μm and coupled through a 32.5?nm film. We find that c_{p} is strongly enhanced when compared with data where coupling is not present. An analysis of this excess signal shows that it is proportional to the finite-size correlation length in the boxes ξ(t,L), and it is measurable as far as S/ξ~30-50. We obtain ξ(0,L) and the scaling function (within a constant) for ξ(t,L) in an L^{3} box geometry. Furthermore, we find that ρ_{s}/ρ of the film persists a full decade closer to the bulk transition temperature T_{λ} than a film uninfluenced by proximity effects. This excess in ρ_{s}/ρ is measurable even when S/ξ>100, which cannot be understood on the basis of mean field theory.  相似文献   

17.
The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid.In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines,which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms.  相似文献   

18.
An ultracold atomic Bose gas in an optical lattice is shown to provide an ideal system for the controlled analysis of disordered Bose lattice gases. This goal may be easily achieved under the current experimental conditions by introducing a pseudorandom potential created by a second additional lattice or, alternatively, by placing a speckle pattern on the main lattice. We show that, for a noncommensurable filling factor, in the strong-interaction limit, a controlled growing of the disorder drives a dynamical transition from superfluid to Bose-glass phase. Similarly, in the weak interaction limit, a dynamical transition from superfluid to Anderson-glass phase may be observed. In both regimes, we show that even very low-intensity disorder-inducing lasers cause large modifications of the superfluid fraction of the system.  相似文献   

19.
We have used the acoustic Faraday effect in superfluid 3He to perform high resolution spectroscopy of an excited state of the superfluid condensate, called the imaginary squashing mode. With acoustic cavity interferometry we measure the rotation of the plane of polarization of a transverse sound wave propagating in the direction of the magnetic field from which we determine the Zeeman energy of the mode. We interpret the Landé g factor, combined with the zero-field energies of this excited state, using the theory of Sauls and Serene, to calculate the strength of f-wave interactions in 3He.  相似文献   

20.
We propose an experiment to directly probe the non-abelian statistics of Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms. We show that different orders of braiding operations give orthogonal output states that can be distinguished through Raman spectroscopy. Realization of Majorana states in an s-wave superfluid requires strong spin-orbital coupling and a controllable Zeeman field in the perpendicular direction. We present a simple laser configuration to generate the artificial spin-orbital coupling and the required Zeeman field in the dark-state subspace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号