首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2-μm lasers with high pulse energy and long pulse width of hundreds of nanoseconds are needed urgently in the accurate wind velocity lidar systems. This paper presents the acoustic-optical Q-switched Tm:YAG laser performance in a pulsed-laser-diode end-pumping figure-eight ring resonator structure. Pulse energy and pulse width are investigated with the increasing of the incident pump energy at different repetition rate operation. Maximum energy of 4.6 mJ with the pulse width of 179.2 ns and 3.57 mJ with pulse width of 184.4 ns are obtained at the repetition rate of 20 and 100 Hz, respectively. Under free-running and Q-switched operation, the peak output wavelength is 2.014 μm at all time, and the beam quality factors are lower than 2 times diffraction-limited measured by a knife-edge traveling method.  相似文献   

2.
The lasing characteristics of Tm:LuAG at room temperature are reported. The maximum output power at 2.023-μm wavelength is 4.91 W and the slope efficiency is 25.39%. The mode matching between pump mode and laser mode is optimized by changing the pump beam waist radius and its location. Different output couplers are used to realize the optimal laser output. The relationship between operation temperature and output power is also discussed.  相似文献   

3.
High-efficiency continuous-wave (CW) Tm:YLF laser by the dual-end-pumping configuration is presented. Under the total input pump power of 24.0 W, the highest output power reaches 9.8 W in the wavelength range of 1910 - 1926 nm by use of 10% output coupling, corresponding to optical conversion efficiency of 40.9% and slope efficiency of 51.4%. The free-running laser spectrum of Tm:YLF is measured.  相似文献   

4.
The solid-state, tunable, narrowband, high pulse energy and high reliability lasers are attractive source for LIDAR system. In this paper, we demonstrated a diode pumped injection-seeded 2 μm Tm:YAG laser. By inserting two F-P etalons into the laser cavity, linear-polarized single-frequency seed-laser was achieved at a wavelength of 2013 nm, with a maximum output power of 60 mW. Long-term and short-term frequency stability for the seed-laser were 1.27 × 10− 7 and 97 Hz/μs, respectively. High power Q-switched laser was operated using a bowtie cavity, the bidirectional output of which was favorable for the injection-seeded. After injecting the seed-laser to the power-laser, single-frequency, nearly transform-limited pulsed 2 μm laser was obtained. As much as 2.0 mJ output energy was achieved at an operating repetition rate of 15 Hz, with a pulse width of 356.2 ns.  相似文献   

5.
2-μm lasers with high pulse energy and long pulse width of hundreds of nanoseconds are needed urgently in the accurate wind velocity lidar systems. This paper presented the acoustic-optical Q-switched Tm:LuAG laser performance in a pulsed-laser-diode end-pumping figure-eight ring resonator structure. Pulse energy and pulse width are investigated with the increasing of the incident pump energy at different repetition rate operation. Maximum energy of 3.3 mJ with the pulse width of 199 ns and 1.8 mJ with pulse width of 293 ns are obtained at the repetition rate of 20 and 50 Hz, respectively. Under Q-switched operation, the peak output wavelength is 2.022 μm at all time, and the beam quality factors are lower than 2 times diffraction-limited measured by a knife-edge traveling method.  相似文献   

6.
A diode-pumped single frequency Tm,Ho:YLF laser operating at an eye-safe wavelength of 2 μm has been developed. Temperature of the laser crystal was controlled at room temperature with a thermoelectric cooler. The line-width narrowing elements were two solid uncoated fused silica etalons whose thicknesses were 1 and 0.1 mm, respectively. Continuous wave single frequency power of 113 mW was obtained.  相似文献   

7.
By using two solid uncoated etalons, we present a diode-pumped linear-polarized single-frequency Tm:YAG laser operating at 2 μm. Placing one 0.1 mm F-P etalon at nearly Brewster angle in the cavity, the linear-polarization laser is achieved. The other 1 mm F-P etalon was turned in the range of very small angle, single-longitudinal-mode (SLM) could be obtained. The maximum output power of linear-polarized single-frequency laser of 60 mW is achieved at the wavelength of 2013 nm. The degree of the polarization is over 30 dB. Long-term frequency stability was also investigated, with the results of wavelength fluctuation about 2.55 × 10−13 m within 3 min and frequency change about 18.86 MHz, corresponding to a frequency stability of 1.27 × 10−7.  相似文献   

8.
Wu  C. T.  Ju  Y. L.  Zhou  R. L.  Duan  X. M.  Wang  Y. Z. 《Laser Physics》2011,21(2):372-375
We report on the single-longitudinal-mode Tm:YAG laser with a volume Bragg grating pumped by laser diode at room temperature. The maximum SLM power of 142 mW was achieved under incident pump power of 3.22 W. The central wavelength was 2012.6 nm accords with the resonant wavelength of the VBG. Three cavity lengths were used to achieve high efficiency and clear spectrum. The maximum output power were measured to be 450.5, 451.4, and 457.3 mW at incident pump power of 3.22 W, corresponding to a slope efficiency of 17.1, 16.9, and 16.7% for the cavity length of 30, 40, and 50 mm, respectively. 40 mm cavity length having the cleanest spectrum among the three was used for SLM laser with one 1 mm F-P etalon inserted into the cavity.  相似文献   

9.
A diode end-pumped single-frequency Tm:YAG laser at room temperature is reported. The maximal output power of single-frequency is as high as 60 mW by using two uncoated fused YAG etalons, which are respectively 0.1 and 1.0 mm thick. We obtained a single frequency Tm:YAG laser at 2013.91 nm. The change of the lasing wavelength on temperature was also measured. The single-longitudinal-mode laser can be used as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

10.
A diode-end-pumped tunable twisted-mode cavity Tm, Ho:YAG laser with single-longitudinal-mode(SLM)operation is demonstrated in this Letter. The maximal SLM output power is 106 m W with a slope efficiency of 4.86%. The wavelength can be changed from 2090.38 to 2097.32 nm by tuning the angle of an etalon.  相似文献   

11.
We report a diode pumped single frequency Tm:YAG laser with two coated fused silica etalons as mode selectors. The maximum single frequency output power was 681 mW with the pumping power of 4.83 W. The slope efficiency of single-frequency laser was 20.5% and the optical-to-optical conversion efficiency was 14.2%. According to the experimental results, we developed a prototype with the maximum single frequency output power of 249 mW and the slope efficiency of 23.1%. The frequency tuning was investigated by changing the temperature of the crystal. A tuning coefficient of 2.57 GHz/°C was obtained. The beam propagation factors M2 were measured as 1.01 in both directions. The linewidth of the single frequency was 40 kHz.  相似文献   

12.
Dai TY  Ju YL  Yao BQ  Shen YJ  Wang W  Wang YZ 《Optics letters》2012,37(11):1850-1852
We demonstrated a 1.91 μm pumped, injection-seeded Q-switched Ho:YAG laser operating at room temperature. By inserting two Fabry-Perot etalons into the laser cavity, single-frequency Tm, Ho:YAG seed lasing was achieved at a wavelength of 2090.9 nm, with a typical output power of 60 mW. Single-frequency, nearly transform-limited Q-switched operation of the Ho:YAG laser was achieved by injection seeding. The output energy of the single-frequency Q-switched pulse is 7.6 mJ, with a pulse width of 132 ns and a repetition rate of 100 Hz. We measured the pulse spectrum, half-width of which was 3.5 MHz, by a heterodyne technique.  相似文献   

13.
A diode end-pumped single-frequency Tm:YAG laser at room temperature was reported. The maximal output power of single-frequency is 30 mW by using two uncoated etalons. We obtained a single frequency Tm:YAG laser at 2008.14 nm. The single-longitudinal-mode laser can be used as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

14.
Room-temperature operation of a single longitudinal-mode c-cut Tm(6%), Ho(0.4%):YLF microchip laser is reported. An incident pump power of 713 mW is used to generate the maximum single-frequency output power of 17 mW at 2050.5 nm, which corresponds to the slope efficiency of 10%.  相似文献   

15.
A high efficient diode-pumped Tm:YAP laser is reported. The maximum output power at 1981 nm is 5.2 W and the slope efficiency is 30%. Unpolarized absorption near 800 nm and unpolarized fluorescence spectra near 1800 nm pumped by laser diode (LD) are measured. In addition, the relationship between operation temperature and output power is discussed.  相似文献   

16.
The lasing characteristics of composite Tm:YAG rod with undoped ends at room temperature are reported. The maximum output power at 2.015 #m is 6.97 W and the slope efficiency is 41.45%. Focusing point and output coupler are changed to find the optimization condition. The relationship between operation temperature and output power is discussed. Comparison between Tm:YAG and composite Tm:YAG testifies the superiority of composite crystal.  相似文献   

17.
In this Letter, we demonstrate a diode-pumped electro-optical cavity-dumped Tm:YAP laser for the first time to our knowledge. A pulse width of 7.1 ns is achieved at a wavelength of 1996.9 nm. A maximum output power of 3.02 W is obtained with a pump power of 58.8 W at a repetition rate of 100 k Hz and a high-voltage time of 1000 ns, corresponding to an overall optical-to-optical conversion efficiency of 5.2%. In addition, we study the effect of repetition rate and high-voltage time on the output power characteristics of a cavity-dumped Tm:YAP laser.  相似文献   

18.
We have investigated acoustic-optical Q-switched Tm,Ho:YLF laser end-pumped by a laser-diode. At room temperature, a 2.067 μm wavelength pulsed output is realized. Average output power, single pulse energy and pulse-width are measured at different incident pump powers and pulse repetition frequencies. When the incident pump power is 2.8 W, a maximum average output power of 189 mW is obtained at the repetition frequency of 9 kHz, and this corresponds to an optical conversion efficiency of 6.8%. The maximum single pulse energy of 65μJ, the shortest pulse-width with full-width at half-maximum (FWHM) of 138 ns and the maximum peak power of 470 W are obtained at the pulse repetition frequency of 1 kHz.  相似文献   

19.
A high power cryogenic cooling Tm-doped (2%) GdVO4 laser double-end-pumped by fiber-coupled-diode with the center wavelength of 804.5 nm at 21 ℃ is reported. The highest continuous-wave (CW) power of 2.35 W at 1903 nm is attained at pump power of 24 W. The slope efficiency is 12.5% and the threshold is 3.2 W. Single- and double-end-pumped types are investigated.  相似文献   

20.
Lee HC  Byeon SU  Lukashev A 《Optics letters》2012,37(7):1160-1162
We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号