首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whole treechips obtained from softwood forest thinnings were pretreated via single-and two-stage dilute-sulfuric acid pretreatment. Whole-tree chips were impregnated with dilute sulfuric acid and steam treated in a 4-L steam explosion reactor. In single-stage pretreatment, wood chips were treated using a wide range of severity. In two-stage pretreatment, the first stage was carried out at low severity tomaximize hemicellulose recovery. Solubilized sugars were recovered from the first-stage prehydrolysate by washing with water. In the second stage, water-insoluble solids from first-stage prehydrolysate were impregnated with dilute sulfuric acid, then steam treated at more severe conditions to hydrolyze a portion of the remaining cellulose to glucose and to improve the enzyme digestibility. The total sugar yields obtained after enzymatic hydrolysis of two-stage dilute acid-pretreated samples were compared with sugar yields from single-stage pretreatment. The overall sugar yield from two-stage dilute-acid pretreatment was approx 10% higher, and the net enzyme requirement was reduced by about 50%. Simultaneous saccharification and fermentation using an adapted Saccharomyces cerevisiae yeast strain further improved cellulose conversion yield and lowered the enzyme requirement.  相似文献   

2.
Whole tree chips obtained from softwood forest thinnings were converted to ethanol via a two-stage dilute acid hydrolysis followed by yeast fermentation. The chips were first impregnated with dilute sulfuric acid, then pretreated in a steam explosion reactor to hydrolyze, more than 90% of the hemicellulose and approx 10% of the cellulose. The hydrolysate was filtered and washed with water to recover the sugars. The washed fibers were then subjected to a second acid im pregnation and hydrolysis to hydrolyze as much as 45% of the reamining cellulose. The liquors from both hydrolysates were combined and fermented to ethanol by a Saccharomyces cerevisiae yeast that had been adapted to the inhibitors. Based on available hexose sugars, ethanol yields varied from 74 to 89% of theoretical. Oligosaccharide contents higher than about 10% of the total available sugar appear to have a negative impact on ethanol yield.  相似文献   

3.
In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.  相似文献   

4.
A simple and efficient method of enhancing biomass saccharification by microwave-assisted pretreatment with dimethyl sulfoxide/1-allyl-3-methylimidazolium chloride is proposed. Softwood(pine wood(PW)), hardwoods(poplar wood, catalpa bungi, and Chinese parasol), and agricultural wastes(rice straw, wheat straw, and corn stover(CS)) were exploited. Results showed that the best pretreatment effect was in PW with 54.3% and 31.7% dissolution and extraction ratios, respectively. The crystal form of cellulose in PW extract transformed from I to II, and the contended cellulose ratio and glucose conversion ratio reached 85.1% and 85.4%, respectively. CS after steam explosion achieved a similar pretreating effect as PW, with its cellulose hydrolysis ratio reaching as high as 91.5% after IL pretreatment.  相似文献   

5.
The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response surface methodology. The WEx process parameters studied were temperature (160–210 °C), retention time (5–20 min), and dilute sulfuric acid concentration (0.2–0.5 %). The pretreatment parameter set E, applying 210 °C for 5 min and 0.5 % dilute sulfuric acid, was found most suitable for achieving a high glucose release with low formation of by-products. Under these conditions, the cellulose and hemicellulose sugar recovery was 94 % and 70 %, respectively. The efficiency of the enzymatic hydrolysis of cellulose under these conditions was 91 %. On the other hand, the release of pentose sugars was higher when applying less severe pretreatment conditions C (160 °C, 5 min, 0.2 % dilute sulfuric acid). Therefore, the choice of the most suitable pretreatment conditions is depending on the main target product, i.e., hexose or pentose sugars.  相似文献   

6.
Lignocellulosic biomass, such as wood, grass, agricultural, and forest residues, are potential resources for the production of bioethanol. The current biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. For this process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. This paper reviews several leading acidic, neutral, and alkaline pretreatments technologies. Different pretreatment methods, including dilute acid pretreatment (DAP), steam explosion pretreatment (SEP), organosolv, liquid hot water (LHW), ammonia fiber expansion (AFEX), soaking in aqueous ammonia (SAA), sodium hydroxide/lime pretreatments, and ozonolysis are intensively introduced and discussed. In this minireview, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.  相似文献   

7.
The study investigated the production of bioethanol from softwood, in particular pine wood chip. The steam explosion pretreatment was largely investigated, evaluating also the potential use of a double-step process to increase ethanol production through the use of both solid and liquid fraction after the pretreatment. The pretreatment tests were carried out at different conditions, determining the composition of solid and liquid fraction and steam explosion efficiency. The enzymatic hydrolysis was carried out with Ctec2 enzyme while the fermentation was carried out using Saccharomyces Cerevisiae yeast “red ethanol”. It was found that the best experimental result was obtained for a single-step pretreated sample (10.6 g of ethanol/100 g of initial biomass dry basis) for a 4.53 severity. The best double-step overall performance was equal to 8.89 g ethanol/100 g of initial biomass dry basis for a 4.27 severity. The enzymatic hydrolysis strongly depended on the severity of the pretreatment while the fermentation efficiency was mainly influenced by the concentration of the inhibitors. The ethanol enhancing potential of a double-step steam explosion could slightly increase the ethanol production compared to single-step potential.  相似文献   

8.
Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210°C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.  相似文献   

9.
Three pairs of solid substrates from dilute acid pretreatment of two poplar wood samples were enzymatically hydrolyzed by cellulase preparations supplemented with xylanase. Supplementation of xylanase improved cellulose saccharification perhaps due to improved cellulose accessibility by xylan hydrolysis. Total xylan removal directly affected enzymatic cellulose saccharification. Furthermore, xylan removal by pretreatment and xylanase are indifferent to enzymatic cellulose saccharification. However, more enzymatic xylose and glucose yields were obtained for a substrate with lower xylan content after a severer pretreatment at the same xylanase dosage. The effectiveness of xylanase at increased dosages depended on the substrates structure or accessibility. High xylanase dosages were more effective on well pretreated substrates than on under-pretreated substrates with high xylan content. The application sequence of xylanase and cellulase affected cellulose saccharification. This effect varied with substrate accessibility, perhaps due to competition between xylanase and cellulase binding to the substrate.  相似文献   

10.
We have studied the cellulose supramolecular structure in pulps obtainedby steam explosion of aspen wood. The pulps were bleached with hydrogenperoxidein an OQP-sequence and characterised by size exclusion chromatography and13C cross polarisation magic angle spinning (CP/MAS)NMR-spectroscopy. With CP/MAS-NMR-spectroscopy and chemometrics we were able toseparate the supramolecular structural changes taking place during steamexplosion into two independent processes. One process was related to the extentof processing and showed degradation and dissolution of cellulose,hemicelluloseand lignin accompanied by an increase in cellulose content. The second processwas displayed by pulps having molecular weights below approximately 100000 andwas interpreted as showing the removal of dislocations and an increase incrystalline and/or paracrystalline cellulose in the cellulose fibrils.  相似文献   

11.
The cellulose reactivity of two lignocellulosic feedstocks, switchgrass and poplar, was evaluated under straight saccharification (SS) and simultaneous saccharification and fermentation (SSF) conditions following dilute sulfuric acid pretreatments designed for optimum xylose yields. The optimum pretreatment conditions, within the constraints of the experimental system (Parr batch reactor), were 1.2% acid, 180°C, and 0.5 min for switchgrass and 1% acid, 180°C, and 0.56 min for poplar. The cellulase enzyme preparation was from Trichoderma reesei and fermentations were done with Saccharomyces cerevisiae. Time courses for SS were monitored as the sum of glucose and cellobiose; those for SSF as the sum of glucose, cellobiose, and ethanol. Percentage conversions under SS conditions were 79.1% and 91.4% for the pretreated poplar and switchgrass feedstocks, respectively. Analogous values under SSF conditions were 73.0% and 90.3% for pretreated poplar and switchgrass, respectively.  相似文献   

12.
The Biomass Refining Consortium for Applied Fundamentals and Innovation, with members from Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, Texas A&M University, the University of British Columbia, and the University of California at Riverside, has developed comparative data on the conversion of corn stover to sugars by several leading pretreatment technologies. These technologies include ammonia fiber expansion pretreatment, ammonia recycle percolation pretreatment, dilute sulfuric acid pretreatment, flowthrough pretreatment (hot water or dilute acid), lime pretreatment, controlled pH hot water pretreatment, and sulfur dioxide steam explosion pretreatment. Over the course of two separate USDA- and DOE-funded projects, these pretreatment technologies were applied to two different corn stover batches, followed by enzymatic hydrolysis of the remaining solids from each pretreatment technology using identical enzyme preparations, enzyme loadings, and enzymatic hydrolysis assays. Identical analytical methods and a consistent material balance methodology were employed to develop comparative sugar yield data for each pretreatment and subsequent enzymatic hydrolysis. Although there were differences in the profiles of sugar release, with the more acidic pretreatments releasing more xylose directly in the pretreatment step than the alkaline pretreatments, the overall glucose and xylose yields (monomers + oligomers) from combined pretreatment and enzymatic hydrolysis process steps were very similar for all of these leading pretreatment technologies. Some of the water-only and alkaline pretreatment technologies resulted in significant amounts of residual xylose oligomers still remaining after enzymatic hydrolysis that may require specialized enzyme preparations to fully convert xylose oligomers to monomers.  相似文献   

13.
The pretreatment of lignocellulosic materials prior to the enzymatic hydrolysis is essential to the sugar yield and bioethanol production. Dilute acid hydrolysis of black spruce softwood chip was performed in a continuous high temperature reactor followed with steam explosion and mechanical refining. The acid-soaked wood chips were pretreated under different feeding rates (60 and 92 kg/h), cooking screw rotation speeds (7.2 and 14.4 rpm), and steam pressures (12 and 15 bar). The enzymatic hydrolysis was carried out on the acid-insoluble fraction of pretreated material. At lower feeding rate, the pretreatment at low steam pressure and short retention time favored the recovery of hemicellulose. The pretreatment at high steam pressure and longer retention time recovered less hemicellulose but improved the enzymatic accessibility. As a result, the overall sugar yields became similar no matter what levels of the retention time or steam pressure. Comparing with lower feeding rate, higher feeding rate resulted in consistently higher glucose yield in both liquid fraction after pretreatment and that released after enzymatic hydrolysis.  相似文献   

14.
An integrated process for obtaining liquid biofuels is reported. The process is based on the separation of a lignocellulosic feedstock into cellulose and low-molecular-weight lignin (LMWL) followed by their conversion into two types of liquid biofuels, namely, hydrocarbon mixtures and bioalcohols. Different methods of wood fractionation into cellulose and LMWL—mechanical, steam explosion, and selective oxidation methods and their combinations—are compared. The amount of cellulose derived from wood and the amount of hydrolysate obtained from this cellulose for ethanol biosynthesis are determined by the efficiency of the method used for the fractionation of the lignocellulosic material. The best results are achieved by combining mechanical activation and subsequent catalytic oxidation of wood. Use of the resulting high-quality glucose solution, which are free of pentoses—sugars inhibiting ethanol biosynthesis—allows the alcohol yield to be increased by 30–35%. Liquid hydrocarbon mixtures enriched with phenols and products of their alkylation with ethanol have been obtained by thermal processing of LMWL in ethanol at an elevated pressure.  相似文献   

15.
A two-step process based on steam explosion pretreatment followed by alkaline ethanol solution post-treatment was used to fractionate Lespedeza stalks (Lespedeza cyrtobotrya). Steam explosion pretreatment, under at 15 kg/m2 to 25 kg/m2 for 4 min, followed by post-treatment with 60% aqueous ethanol containing 1% NaOH yielded 49.6–65.5% (% dry matter) cellulose rich fractions, compared to 68.6% from non-pretreated material. It was found that the content of glucose was gradually increased from 73.7 to 86.9% as the result of elevating steaming pressure, but the solubilisation of lignin maintained the same level (about 10–11%) regardless of the severity. The average degree of polymerization increased first and then decreased, revealing that autohydrolysis reactions were dominant in different regions during the steam explosion. Scanning electron microscopy images of the cellulosic residues show that steam explosion mainly resulted in breakage of the fibres, and extraction post-treatment led to solution of lignin (and hemicelluloses) and significant defibrillation. The increase of onset degradation temperature, together with the higher pyrolysis residues suggest that the thermal stability of cellulose rich fractions was increased by steam explosion and elevated steaming pressure. All the rich-in-cellulose fractions were further characterized by FT-IR, XRD, and CP/MAS 13C NMR spectroscopy.  相似文献   

16.
Saline crops and autoclaved municipal organic solid wastes were evaluated for their potential to be used as feedstock for fermentable sugar production through dilute acid pretreatment and enzymatic hydrolysis. The saline crops included two woods, athel (Tamarix aphylla L) and eucalyptus (Eucalyptus camaldulensis), and two grasses, Jose tall wheatgrass (Agropyron elongatum), and creeping wild rye (Leymus triticoides). Each of the biomass materials was first treated with dilute sulfuric acid under selected conditions (acid concentration =1.4% (w/w), temperature =165 degrees C, and time =8 min) and then treated with the enzymes (cellulases and beta-glucosidase). The chemical composition (cellulose, hemicellulose, and lignin contents) of each biomass material and the yield of total and different types of sugars after the acid and enzyme treatment were determined. The results showed that among the saline crops evaluated, the two grasses (creeping wild rye and Jose tall wheatgrass) had the highest glucose yield (87% of total cellulose hydrolyzed) and fastest reaction rate during the enzyme treatment. The autoclaved municipal organic solid wastes showed reasonable glucose yield (64%). Of the two wood species evaluated, Athel has higher glucose yield (60% conversion of cellulose) than eucalyptus (38% conversion of cellulose).  相似文献   

17.
Single-stage cocurrent dilute acid pretreatments were carried out on yellow poplar (Liriodendron tulipifera) sawdust using an as-installed and short residence time modified pilot-scale Sunds hydrolyzer and a 4-L bench-scale NREL digester (steam explosion reactor). Pretreatment conditions for the Sunds hydrolyzer, installed in the NREL process development unit (PDU), which operates at 1 t/d (bone-dry t) feed rate, spanned the temperature range of 160 – 210°C, 0.1 – 1.0% (w/w) sulfuric acid, and 4-10-min residence times. The batch pretreatments of yellow poplar sawdust in the bench-scale digester were carried out at 210 and 230°C, 0.26% (w/w) sulfuric acid, and 1-, 3-, and 4-min residence times. The dilute acid prehydrolysis solubilized more than 90% of the hemicellulose, and increased the enzymatic digestibility of the cellulose that remained in the solids. Compositional analysis of the pretreated solids and liquors and mass balance data show that the two pretreatment devices had similar pretreatment performance.  相似文献   

18.
Among the available agricultural byproducts, corn stover, with its yearly production of 10 million t (dry basis), is the most abundant promising raw material for fuel ethanol production in Hungary. In the United States, more than 216 million to fcorn stover is produced annually, of which a portion also could possibly be collected for conversion to ethanol. However, a network of lignin and hemicellulose protects cellulose, which is the major source of fermentable sugars in corn stover (approx 40% of the dry matter [DM]). Steam pretreatment removes the major part of the hemicellulose from the solid material and makes the cellulose more susceptible to enzymatic digestion. We studied 12 different combinations of reaction temperature, time, and pH during steam pretreatment. The best conditions (200°C, 5 min, 2% H2SO4) increased the enzymatic conversion (from cellulose to glucose) of corn stover more then four times, compared to untreated material. However, steam pretreatment at 190°C for 5 min with 2% sulfuric acid resulted in the highest overall yield of sugars, 56.1 g from 100 g of untreated material (DM), corresponding to 73% of the theoretical. The liquor following steam explosion was fermented using Saccharomyces cerevisiae to investigate the inhibitory effect of the pretreatment. The achieved ethanol yield was slightly higher than that obtained with a reference sugar solution. This demonstrates that baker's yeast could adapt to the pretreated liquor and ferment the glucose to ethanol efficiently.  相似文献   

19.
One commonly cited factor that contributes to the recalcitrance of biomass is cellulose crystallinity. The present study aims to establish the effect of several pretreatment technologies on cellulose crystallinity, crystalline allomorph distribution, and cellulose ultrastructure. The observed changes in the cellulose ultrastructure of poplar were also related to changes in enzymatic hydrolysis, a measure of biomass recalcitrance. Hot-water, organo-solv, lime, lime-oxidant, dilute acid, and dilute acid-oxidant pretreatments were compared in terms of changes in enzymatic sugar release and then changes in cellulose ultrastructure measured by 13C cross polarization magic angle spinning nuclear magnetic resonance and wide-angle X-ray diffraction. Pretreatment severity and relative chemical depolymerization/degradation were assessed through compositional analysis and high-performance anion-exchange chromatography with pulsed amperometric detection. Results showed minimal cellulose ultrastructural changes occurred due to lime and lime-oxidant pretreatments, which at short residence time displayed relatively high enzymatic glucose yield. Hot water pretreatment moderately changed cellulose crystallinity and crystalline allomorph distribution, yet produced the lowest enzymatic glucose yield. Dilute acid and dilute acid-oxidant pretreatments resulted in the largest increase in cellulose crystallinity, para-crystalline, and cellulose-Iβ allomorph content as well as the largest increase in cellulose microfibril or crystallite size. Perhaps related, compositional analysis and Klason lignin contents for samples that underwent dilute acid and dilute acid-oxidant pretreatments indicated the most significant polysaccharide depolymerization/degradation also ensued. Organo-solv pretreatment generated the highest glucose yield, which was accompanied by the most significant increase in cellulose microfibril or crystallite size and decrease in relatively lignin contents. Hot-water, dilute acid, dilute acid-oxidant, and organo-solv pretreatments all showed evidence of cellulose microfibril coalescence.  相似文献   

20.
Agricultural residues were pretreated by steam explosion and the cellulosic component of these substrates were converted to ethanol using a combined enzymatic hydrolysis and fermentation (CHF) process. The enzymatic hydrolysis was carried out using culture filtrates ofTrichoderma harzianum E58 while the liberated sugars were fermented to ethanol byS. cerevisiae. Initially, pretreatment conditions were optimized to ensure that the substrates were readily hydrolyzed and fermented. The agricultural residues were steamed for various times between 30 and 120 s at approximately 240‡C prior to rapid decompression (explosion) in a small masonite-type gun. The various substrates were selectively extracted by water and alkali to see whether the enzymatic hydrolysis and fermentability of the substrates were enhanced. A comparison between the overall conversion of wheat and barley straw was made since these are the two most readily available agricultural residues in Canada. Steam explosion did not affect the hexosan content of the residues, although the pentosan content of the substrates decreased with increasing duration of steaming. The hexosan (cellulose) content of wheat straw was 50.7% of the total substrate while a slightly higher 52.9% cellulose content was detected in the barley straw. Wheat straw was more efficiently hydrolyzed after it had been steamed for 90 s while optimum hydrolysis of the barley straw was detected after 60 s. Steam exploded wheat and barley straw that was subsequently extracted with water was readily hydrolyzed to their component sugars.S. cerevisiae could almost quantitatively convert these sugars to ethanol. This indicated that water washing not only enhanced the enzymatic hydrolysis of the steam exploded substrates, it also removed inhibitory material that restricted the growth of S.cerevisiae. Maximum hydrolysis (78.5%) and ethanol yields (10 mg/mL) were obtained when wheat straw was steamed for 90 s. Slightly lower hydrolysis (76.0%) and ethanol yields (9.5 mg/mL) were obtained with barley straw that had been steamed for 120 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号