首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The principal elements of the (113)Cd shielding tensor for a set of five- coordinate compounds having mixed donor atoms coordinating to the cadmium were determined via CP/MAS NMR experiments. The first complex, [HB(3,5-Me(2)pz)(3)]CdBH(4) (where pz = pyrazolyl), has a CdN(3)H(2) inner coordination sphere. The isotropic chemical shift in the solid state is 355.1 ppm, and its chemical shift anisotropy (CSA, Deltasigma) is -596 ppm with an asymmetry parameter (eta) of 0.64. The second complex, [HB(3,5-Me(2)pz)(3)]Cd[H(2)B(pz)(2)], has five nitrogen donor atoms bonded to the cadmium. This N(5) or N(3)N(2) compound was the only material of this study to manifest dipolar splitting of the cadmium resonance from the quadrupolar (14)N. The isotropic chemical shift, CSA, and the value of eta for this material were therefore determined at higher field where the dipolar splitting was less than the linewidth, yielding values of 226.6 ppm, -247 ppm, and 0.32, respectively. A second N(5) material, [HB(3-Phpz)(3)]Cd[H(2)B(3,5-Me(2)pz)(2)], was also investigated and has an isotropic shift of 190.2 ppm, a CSA of 254 ppm, and an eta of 0.86. Also studied was [HB(3-Phpz)(3)]Cd[(Bu(t)CO)(2)CH], which has an CdN(3)O(2) inner core. The isotropic chemical shift of this complex is 173.6 ppm, and the values of Deltasigma and eta were determined to be -258 ppm and 0.38, respectively. The final compound, [HB(3,5-Me(2)pz)(3)]Cd[S(2)CNEt(2)], with N(3)S(2) donor atoms, has an isotropic shift of 275.8 ppm, an eta of 0.51, and a CSA of +375 ppm. Utilizing previous assignments, the most shielded tensor element was determined to be oriented normal to the plane of the tridentate ligand. The shielding tensor information is used to speculate on the coordination geometry of the CdN(3)O(2) inner core complex.  相似文献   

2.
Insight into the unexpectedly small range of isotropic nitrogen chemical shifts in nitrobenzene derivatives is gained through measurements of the chemical shift (CS) tensor by solid-state NMR experiments and ab initio molecular orbital (MO) and density functional theory (DFT) calculations. The principal components, delta(ii), of the (15)N CS tensors have been measured for nitrobenzene, 4-nitroaniline, 4-nitrotoluene, 4-nitroanisole, 4-nitroacetophenone, nitromesitylene, and 2,4,6-tri-tert-butylnitrobenzene. No obvious correlations of the delta(ii) values with traditional reactivity parameters were observed. The CS tensor components change significantly for the para-substituted nitrobenzenes, but these variations nearly cancel to yield isotropic shifts that fall in a range of only 3 ppm. Ab initio calculations of the delta(ii) values at the HF level are in poor agreement with the experimental values, whereas MP2 calculations and DFT calculations employing the B3LYP functional are in better agreement with experiment. The calculated (B3LYP/6-311G) delta(ii) values follow a trend in which delta(11) and delta(33) increase while delta(22) decreases with the accepted electron withdrawing ability of the para substituent. These changes tend to cancel yielding a variation in delta(iso) of only 4 ppm. These calculations indicate that the CS tensor has the same orientation as the carbon CS tensor in the isoelectronic benzoate anion: delta(11) bisects the O-N-O angle, delta(33) is perpendicular to the NO(2) plane, and delta(22) is in the NO(2) plane and perpendicular to delta(11).  相似文献   

3.
Three-dimensional aromaticity is shown to play a role in the stability of deltahedral Zintl clusters and here we examine the connection between aromaticity and stability. In order to gain further insight, we have studied Zintl analogs comprised of bismuth doped tin clusters with photoelectron spectroscopy and theoretical methods. To assign aromaticity, we examine the ring currents induced around the cage by using the nucleus independent chemical shift. In the current study, BiSn(4)(-) is a stable cluster and fits aromatic criteria, while BiSn(5)(-) is found to fit antiaromatic criteria and has reduced stability. The more stable clusters exhibit an aromatic character which originates from weakly interacting s-states and bonding orbitals parallel to the surface of the cluster, while nonbonding lone pairs perpendicular to the surface of the cluster account for antiaromaticity and reduced stability. The effect of three-dimensional aromaticity on the electronic structure does not result in degeneracies, so the resulting variations in stability are smaller than those seen in conventional aromaticity.  相似文献   

4.
The replacement of carbon with nitrogen can affect the aromaticity of organic rings. Nucleus-independent chemical shift (NICS) calculations at the center of the aromatic π-systems reveal that incorporating nitrogen into 5-membered heteroaromatic dienes has only a small influence on aromaticity. In contrast, each nitrogen incorporated into benzene results in a sequential and substantial loss of aromaticity. The contrasting effects of nitrogen substitution in 5-membered dienes and benzene are reflected in their Diels–Alder reactivities as dienes. 1,2-Diazine experiences a 1011-fold increase in reactivity upon nitrogen substitution at the 4- and 5-positions, whereas a 5-membered heteroaromatic diene, furan, experiences a comparatively incidental 102-fold increase in reactivity upon nitrogen substitution at the 3- and 4-positions.  相似文献   

5.
The natural bond orbital (NBO) analysis, nucleus independent chemical shift (NICS), and 14N NQR parameters of the most stable tautomers of adenine in the gas phase were predicted using density functional theory method. The NBO analysis revealed that the resonance interaction between lone pair of the nitrogen atom and empty non‐Lewis NBO increases with increasing the p character of the nitrogen lone pair. The present investigation indicated the π clouds in both the considered heterocyclic rings containing six electrons, and these tautomers has the aromatic character. The NICS study utilizing the gauge‐invariant atomic orbital method showed that there are diatropic currents in the heterocyclic rings of the tautomers, so we determined the order of overall aromaticity of these tautomers. The results of NQR parameter calculations showed three parameters are effective on nuclear quadrupole coupling constant; the p character value of lone pair electrons of nitrogens, and the related occupancies and whenever, the lone pair electrons of nitrogens participate in the formation of chemical bond and/or π system of the ring, the qzz and consequently its χ decreases.  相似文献   

6.
The trifluoromethyl anion (CF3) displays 13C NMR chemical shift (175.0 ppm) surprisingly larger than neutral (CHF3, 122.2 ppm) and cation (CF3+, 150.7 ppm) compounds. This unexpected deshielding effect for a carbanion is investigated by density functional theory calculations and decomposition analyses of the 13C shielding tensor into localized molecular orbital contributions. The present work determines the shielding mechanisms involved in the observed behaviour of the fluorinated anion species, shedding light on the experimental NMR data and demystify the classical correlation between electron density and NMR chemical shift. The presence of fluorine atoms induces the carbon lone pair to create a paramagnetic shielding on the carbon nucleus.  相似文献   

7.
High-resolution liquid- and solid-state 119Sn NMR spectroscopy was used to study the bonding environment in the series of monomeric, two-coordinate Sn(II) compounds of formula Sn(X)C6H3-2,6-Trip2 (X = Cl, Cr(eta 5-C5H5)(CO)3, t-Bu, Sn(Me)2C6H3-2,6-Trip2; Trip = C6H2-2,4,6-i-Pr3). The trends in the principal components of the chemical shift tensor extracted from the solid-state NMR data were consistent with the structures determined by X-ray crystallography. Furthermore, the spectra for the first three compounds displayed the largest 119Sn NMR chemical shift anisotropies (up to 3798 ppm) of any tin compound for which data are currently available. Relaxation time based calculations for the dimetallic compound 2,6-Trip2H3C6Sn-Sn(Me)2C6H3-2,6-Trip2 suggests that the chemical shift anisotropy for the two-coordinate tin center may be as much as ca. 7098 ppm, which is as broad as the 1 MHz bandwidth of the NMR spectrometer.  相似文献   

8.
Density functional theory (DFT) has been applied to study the conformational dependence of 31P chemical shift tensors in B-DNA. The gg and gt conformations of backbone phosphate groups representing BI- and BII-DNA have been examined. Calculations have been carried out on static models of dimethyl phosphate (dmp) and dinucleoside-3',5'-monophosphate with bases replaced by hydrogen atoms in vacuo as well as in an explicit solvent. Trends in 31P chemical shift anisotropy (CSA) tensors with respect to the backbone torsion angles alpha, zeta, beta, and epsilon are presented. Although these trends do not change qualitatively upon solvation, quantitative changes result in the reduction of the chemical shift anisotropy. For alpha and zeta in the range from 270 degrees to 330 degrees and from 240 degrees to 300 degrees , respectively, the delta22 and delta33 principal components vary within as much as 30 ppm, showing a marked dependence on backbone conformation. The calculated 31P chemical shift tensor principal axes deviate from the axes of O-P-O bond angles by at most 5 degrees . For solvent models, our results are in a good agreement with experimental estimates of relative gg and gt isotropic chemical shifts. Solvation also brings the theoretical deltaiso of the gg conformation closer to the experimental gg data of barium diethyl phosphate.  相似文献   

9.
The transition states (TSs) of 5-endo-dig and 5-endo-trig anionic ring closures are the first unambiguous examples of nonpericyclic reactions with TSs stabilized by aromaticity. Their five-center, six-electron in-plane aromaticity is revealed by the diatropic dissected nucleus-independent chemical shifts, -24.1 and -13.7 ppm, respectively, resulting from the delocalization of the lone pair at the nucleophilic center, a σ CC bond, and an in-plane alkyne (or alkene) π bond. Other seemingly analogous exo and endo cyclization TSs do not have these features. A symmetry-enhanced combination of through-space and through-bond interactions explains the anomalous geometric, energetic, and electronic features of the 5-endo ring closure transition state. Anionic 5-endo cyclizations can be considered to be "aborted" [2,3]-sigmatropic shifts. The connection between anionic cyclizations and sigmatropic shifts offers new possibilities for the design and electronic control of anionic isomerizations.  相似文献   

10.
13C chemical shift tensor data from 2D FIREMAT spectra are reported for 4,7-di-t-butylacenaphthene and 4,7-di-t-butylacenaphthylene. In addition, calculations of the chemical shielding tensors were completed at the B3LYP/6-311G** level of theory. While the experimental tensor data on 4,7-di-t-butylacenaphthylene are in agreement with theory and with previous data on polycyclic aromatic hydrocarbons, the experimental and theoretical data on 4,7-di-t-butylacenaphthene lack agreement. Instead, larger than usual differences are observed between the experimental chemical shift components and the chemical shielding tensor components calculated on a single molecule of 4,7-di-t-butylacenaphthene, with a root mean square (rms) error of +/-7.0 ppm. The greatest deviation is concentrated in the component perpendicular to the aromatic plane, with the largest value being a 23 ppm difference between experiment and theory for the 13CH2 carbon delta11 component. These differences are attributed to an intermolecular chemical shift that arises from the graphitelike, stacked arrangement of molecules found in the crystal structure of 4,7-di-t-butylacenaphthene. This conclusion is supported by a calculation on a trimer of molecules, which improves the agreement between experiment and theory for this component by 14 ppm and reduces the overall rms error between experiment and theory to 4.0 ppm. This intermolecular effect may be modeled with the use of nuclei independent chemical shieldings (NICS) calculations and is also observed in the isotropic 1H chemical shift of the CH2 protons as a 4.2 ppm difference between the solution value and the solid-state chemical shift measured via a 13C-1H heteronuclear correlation experiment.  相似文献   

11.
The NMR chemical shift, a six-parameter tensor property, is highly sensitive to the position of the atoms in a molecule. To extract structural parameters from chemical shifts, one must rely on theoretical models. Therefore, a high quality group of shift tensors that serve as benchmarks to test the validity of these models is warranted and necessary to highlight existing computational limitations. Here, a set of 102 13C chemical-shift tensors measured in single crystals, from a series of aromatic and saccharide molecules for which neutron diffraction data are available, is used to survey models based on the density functional (DFT) and Hartree-Fock (HF) theories. The quality of the models is assessed by their least-squares linear regression parameters. It is observed that in general DFT outperforms restricted HF theory. For instance, Becke's three-parameter exchange method and mpw1pw91 generally provide the best predicted shieldings for this group of tensors. However, this performance is not universal, as none of the DFT functionals can predict the saccharide tensors better than HF theory. Both the orientations of the principal axis system and the magnitude of the shielding were compared using the chemical-shift distance to evaluate the quality of the calculated individual tensor components in units of ppm. Systematic shortcomings in the prediction of the principal components were observed, but the theory predicts the corresponding isotropic value more accurately. This is because these systematic errors cancel, thereby indicating that the theoretical assessment of shielding predictions based on the isotropic shift should be avoided.  相似文献   

12.
Unexpectedly high reactivity of nitrogenated aromatics protected as amides or carbamates, when compared to sulfonamides, can be explained by a decrease of the aromaticity due to a greater ability of the carbon-centered groups to achieve delocalisation of the nitrogen lone pair, resulting in stronger global withdrawing effects.  相似文献   

13.
We show that pancake bonding in radical π-dimers display features of charge shift (CS) bonding. While the CS bonding concept has been developed to interpret the unusual aspects of σ-bonds around centers with a large number of lone pairs, such as F(2) and HOOH, we find a similar role played by the nonbonding or slightly bonding π-electron pairs in π-stacking radical dimers. Arguments and computational evidence indicate that the CS bonding concept developed by Shaik and Hiberty et al. captures essential features of the intermolecular bonding in radical π-dimers in which the overlap of the two radical centered singly occupied molecular orbitals (SOMOs) play a crucial role. By using the tetracyanoethylene anion dimer, [TCNE](2)(2-), as a model, we show that compared to CAS(2,2) calculations, significant binding contributions are recovered in the calculations simply by including selected intrapair excitations of the SOMO-SOMO bonding orbitals and the nonbonding π-orbitals. This observation is the basis for the analogy of chemical bonding between pancake bonded radical π-dimers and other charge shift bonded molecules, such as F(2). By extending the CS bonding concept to a new class of molecules, we find a novel application of the lone pair bond weakening effect (LPBWE) in which the doubly occupied π-orbitals play the role of lone pairs.  相似文献   

14.
The (13)C and (15)N chemical shift tensor principal values for adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine are measured on natural abundance samples. Additionally, the (13)C and (15)N chemical shielding tensor principal values in these four nucleosides are calculated utilizing various theoretical approaches. Embedded ion method (EIM) calculations improve significantly the precision with which the experimental principal values are reproduced over calculations on the corresponding isolated molecules with proton-optimized geometries. The (13)C and (15)N chemical shift tensor orientations are reliably assigned in the molecular frames of the nucleosides based upon chemical shielding tensor calculations employing the EIM. The differences between principal values obtained in EIM calculations and in calculations on isolated molecules with proton positions optimized inside a point charge array are used to estimate the contributions to chemical shielding arising from intermolecular interactions. Moreover, the (13)C and (15)N chemical shift tensor orientations and principal values correlate with the molecular structure and the crystallographic environment for the nucleosides and agree with data obtained previously for related compounds. The effects of variations in certain EIM parameters on the accuracy of the shielding tensor calculations are investigated.  相似文献   

15.
We present a new method for determining the orientation of chemical shift tensors in polycrystalline solids with site resolution and demonstrate its application to the determination of the Calpha chemical shift tensor orientation in a model peptide with beta-sheet torsion angles. The tensor orientation is obtained under magic angle spinning by modulating a recoupled chemical shift anisotropy (CSA) pattern with various dipolar couplings. These dipolar-modulated chemical shift patterns constitute the indirect dimension of a 2D spectrum and are resolved according to the isotropic chemical shifts of different sites in the direct dimension. These dipolar-modulated CSA spectra are equivalent to the projection of a 2D static separated-local-field spectrum onto its chemical shift dimension, except that its dipolar dimension is multiplied with a modulation function. Both (13)C-(1)H and (13)C-(15)N dipolar couplings can modulate the CSA spectra of the Calpha site in an amino acid and yield the relative orientations of the chemical shift principal axes to the C-H and C-N bonds. We demonstrate the C-H and C-N modulated CSA experiments on methylmalonic acid and N-tBoc-glycine, respectively. The MAS results agree well with the results of the 2D separated-local-field spectra, thus confirming the validity of this MAS dipolar-modulation approach. Using this technique, we measured the Val Calpha tensor orientation in N-acetylvaline, which has beta-sheet torsion angles. The sigma(11) axis is oriented at 158 degrees (or 22 degrees) from the C-H bond, while the sigma(22) axis is tilted by 144 degrees (or 36 degrees) from the C-N bond. Both the orientations and the magnitude of this chemical shift tensor are in excellent agreement with quantum chemical calculations.  相似文献   

16.
A series of lead(II) coordination polymers containing [N(CN)2]? (DCA) or [Au(CN)2]? bridging ligands and substituted terpyridine (terpy) ancillary ligands ([Pb(DCA)2] ( 1 ), [Pb(terpy)(DCA)2] ( 2 ), [Pb(terpy){Au(CN)2}2] ( 3 ), [Pb(4′‐chloro‐terpy){Au(CN)2}2] ( 4 ) and [Pb(4′‐bromo‐terpy)(μ‐OH2)0.5{Au(CN)2}2] ( 5 )) was spectroscopically examined by solid‐state 207Pb MAS NMR spectroscopy in order to characterise the structural and electronic changes associated with lead(II) lone‐pair activity. Two new compounds, 2 and [Pb(4′‐hydroxy‐terpy){Au(CN)2}2] ( 6 ), were prepared and structurally characterised. The series displays contrasting coordination environments, bridging ligands with differing basicities and structural and electronic effects that occur with various substitutions on the terpyridine ligand (for the [Au(CN)2]? polymers). 207Pb NMR spectra show an increase in both isotropic chemical shift and span (Ω) with increasing ligand basicity (from δiso=?3090 ppm and Ω=389 ppm for 1 (the least basic) to δiso=?1553 ppm and Ω=2238 ppm for 3 (the most basic)). The trends observed in 207Pb NMR data correlate with the coordination sphere anisotropy through comparison and quantification of the Pb? N bond lengths about the lead centre. Density functional theory calculations confirm that the more basic ligands result in greater p‐orbital character and show a strong correlation to the 207Pb NMR chemical shift parameters. Preliminary trends suggest that 207Pb NMR chemical shift anisotropy relates to the measured birefringence, given the established correlations with structure and lone‐pair activity.  相似文献   

17.
A recently developed chemical shift anisotropy amplification solid-state nuclear magnetic resonance (NMR) experiment is applied to the measurement of the chemical shift tensors in three disaccharides: sucrose, maltose, and trehalose. The measured tensor principal values are compared with those calculated from first principles using density functional theory within the planewave-pseudopotential approach. In addition, a method of assigning poorly dispersed NMR spectra, based on comparing experimental and calculated shift anisotropies as well as isotropic shifts, is demonstrated.  相似文献   

18.
The 129Xe NMR line shapes of xenon adsorbed in the nanochannels of the (+/-)-[Co(en)3]Cl3 ionic crystal have been calculated by grand canonical Monte Carlo (GCMC) simulations. The results of our GCMC simulations illustrate their utility in predicting 129Xe NMR chemical shifts in systems containing a transition metal. In particular, the nanochannels of (+/-)-[Co(en)3]Cl3 provide a simple, yet interesting, model system that serves as a building block toward understanding xenon chemical shifts in more complex porous materials containing transition metals. Using only the Xe-C and Xe-H potentials and shielding response functions derived from the Xe@CH4 van der Waals complex to model the interior of the channel, the GCMC simulations correctly predict the 129Xe NMR line shapes observed experimentally (Ueda, T.; Eguchi, T.; Nakamura, N.; Wasylishen, R. E. J. Phys. Chem. B 2003, 107, 180-185). At low xenon loading, the simulated 129Xe NMR line shape is axially symmetric with chemical-shift tensor components delta(parallel) = 379 ppm and delta(perpendicular) = 274 ppm. Although the simulated isotropic chemical shift, delta(iso) = 309 ppm, is overestimated, the anisotropy of the chemical-shift tensor is correctly predicted. The simulations provide an explanation for the observed trend in the 129Xe NMR line shapes as a function of the overhead xenon pressure: delta(perpendicular) increased from 274 to 292 ppm, while delta(parallel) changed by only 3 ppm over the entire xenon loading range. The overestimation of the isotropic chemical shifts is explained based upon the results of quantum mechanical 129Xe shielding calculations of xenon interacting with an isolated (+/-)-[Co(en)3]Cl3 molecule. The xenon chemical shift is shown to be reduced by about 12% going from the Xe@[Co(en)3]Cl3 van der Waals complex to the Xe@C2H6 fragment.  相似文献   

19.
High magnetic field and high spinning frequency one- and two-dimensional one-pulse MAS 19F NMR spectra of beta-ZrF4 and CeF4 were recorded and reconstructed allowing the accurate determination of the 19F chemical shift tensor parameters for the seven different crystallographic fluorine sites of each compound. The attributions of the NMR resonances are performed using the superposition model for 19F isotropic chemical shift calculation initially proposed by Bureau et al. (Bureau, B.; Silly, G.; Emery, J.; Buzaré, J.-Y. Chem. Phys. 1999, 249, 85-104). A satisfactory reliability is reached with a root-mean-square (rms) deviation between calculated and measured isotropic chemical shift values equal to 1.5 and 3.5 ppm for beta-ZrF4 and CeF4, respectively.  相似文献   

20.
Three ternary oxides, SnWO4, PbWO4, and BiVO4, containing p-block cations with ns2np0 electron configurations, so-called lone pair cations, have been studied theoretically using density functional theory and UV-visible diffuse reflectance spectroscopy. The computations reveal significant differences in the underlying electronic structures that are responsible for the varied crystal chemistry of the lone pair cations. The filled 5s orbitals of the Sn2+ ion interact strongly with the 2p orbitals of oxygen, which leads to a significant destabilization of symmetric structures (scheelite and zircon) favored by electrostatic forces. The destabilizing effect of this interaction can be significantly reduced by lowering the symmetry of the Sn2+ site to enable the antibonding Sn 5s-O 2p states to mix with the unfilled Sn 5p orbitals. This interaction produces a localized, nonbonding state at the top of the valence band that corresponds closely with the classical notion of a stereoactive electron lone pair. In compounds containing Pb2+ and Bi3+ the relativistic contraction of the 6s orbital reduces its interaction with oxygen, effectively diminishing its role in shaping the crystal chemical preferences of these ions. In PbWO4 this leads to a stabilization of the symmetric scheelite structure. In the case of BiVO4 the energy of the Bi 6s orbital is further stabilized. Despite this stabilization, the driving force for a stereoactive lone pair distortion appears to be enhanced. The energies of structures exhibiting distorted Bi3+ environments are competitive with structures that possess symmetric Bi3+ environments. Nevertheless, the "lone pair" that results associated with a distorted Bi3+ environment in BiVO4 is more diffuse than the Sn2+ lone pair in beta-SnWO4. Furthermore, the distortion has a much smaller impact on the electronic structure near the Fermi level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号