首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic nanocomposite materials represent an important class of nanomaterials extensively studied nowadays due to their varied applications from medical diagnostic to storage information. The iron oxides in silica matrix systems are highly investigated. The sol-gel method is a suitable way of preparation of Fe3O4-SiO2 nanocomposite materials, since this method allowed the preparation of nanocomposite materials with narrow size distribution of magnetite in silica matrix. In the present work, nanocomposite materials in the Fe3O4-SiO2 system were prepared by sol-gel method via alkoxide and aqueous route. As SiO2 sources, tetraethoxysilan (TEOS) for the alkoxide route, as well as silica sol Ludox (30%) for the aqueous route, were used. This study shows the influence of the type of silica matrix on the structure, size, and distribution of the Fe3O4 nanoparticles in the Fe3O4-SiO2 systems. The gels were annealed at 550°C in order to consolidate the matrices. The structural characterization of the obtained materials via the two preparation routes was performed by DTA/TGA analysis, X-ray diffraction, IR and Mössbauer spectroscopy, Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED).  相似文献   

2.
In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively.  相似文献   

3.
Multilayer Fe2O3 films were deposited by the sol-gel method on glass substrates using three successive deposition procedures. The films were thermally treated for 1 h at 300°C.The optical and microstructural properties of these films were investigated by spectroscopic ellipsometry (SE) in the 500–1000 nm range. The optical gap was found by fitting the dispersion of the film refractive index (n) with the Wemple-DiDomenico (WDD) formula.The ellipsometric measurements showed also that the Fe2O3 films are anisotropic. The birefringence values (n) of the sol-gel films (0.05–0.08) are smaller than the large values of the Fe2O3 (which are around 0.28) but increase with the crystalization of the films. AFM mesurements showed that the films treated at 300°C start to crystallize.  相似文献   

4.
Fe2O3, Fe3O4 films have been prepared from Fe(OCH2CH(CH3)2)3–(CH3)2CHCH2OH–2.2′-diethanola- mine (DEA)–poly(vinylpyrrolidone) (PVP) solutions by the spin-(SC) and dip-coating (DC) technique on SiO2 and Si substrates. The maximum film thickness achieved without crack formation has been increased by incorporation of PVP (relative molecular weights 40000 and 360000) into the precursor solution. The stability of the precursor solutions was remarkably increased by addition of DEA. Compact, dense, and crack-free Fe2O3 films with thicknesses 900 nm (DC), 450 nm (SC), have been obtained via single-step deposition cycle. Higher-molecular-weight PVP has been more effective in increasing the thickness. The minimum concentration of DEA, which results in pronounced increase of solutions stability, is about R P (n(DEA)/n(Fe) = 0.1). The high content of carboneous residue in the pyrolysed Fe2O3 films promotes the formation of Fe3O4 films via reduction in a gas flow of H2/N2 gas mixture. Microstructure, surface morphology, and magnetic properties of the films have been also investigated using SEM, AFM, and SQUID, respectively.  相似文献   

5.
Composite polymer membranes of poly(vinyl alcohol) (PVA) and iron oxide (Fe3O4) nanoparticles were produced in this work. X-ray diffraction measurements demonstrated the formation of Fe3O4 nanoparticles of cubic structures. The nanoparticles were synthesized by a coprecipitation technique and added to PVA solutions with different concentrations. The solutions were then used to generate flexible membranes by a solution casting method. The size and shape of the nanoparticles were investigated using scanning electron microscopy (SEM). The average size of the nanoparticles was 20±9 nm. Raman spectroscopy and Fourier-transform infrared spectroscopy (FTIR) were utilized to investigate the structure of the membranes, as well as their vibration modes. Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated the thermal stability of the membranes and the crystallinity degree. Electrical characteristics of the thin membranes were examined using impedance spectroscopy as a function of the nanoparticles’ concentrations and temperatures. The resistivity of the fabricated flexible membranes was possible to adjust by controlled doping with suitable concentrations of nanoparticles. The activation energy decreased with the nanoparticles’ concentrations due to the increase in charge carriers’ concentrations. Therefore, the fabricated membranes may be applied for practical applications that involve the recycling of nanoparticles for multiple application cycles.  相似文献   

6.
The Fe3O4-Prussian blue (PB) nanoparticles with core-shell structure have been in situ prepared directly on a nano-Fe3O4-modified glassy carbon electrode by cyclic voltammetry (CV). First, the magnetic nano-Fe3O4 particles were synthesized and characterized by X-ray diffraction. Then, the properties of the Fe3O4-PB nanoparticles were characterized by CV, electrochemical impedance spectroscopy, and superconducting quantum interference device. The resulting core-shell Fe3O4-PB-modified electrode displays a dramatic electrocatalytic ability toward H2O2 reduction, and the catalytic current was a linear function with the concentration of H2O2 in the range of 1 × 10−7~5 × 10−4 mol/l. A detection limit of 2 × 10−8 (s/n = 3) was determined. Moreover, it showed good reproducibility, enhanced long-term stability, and potential applications in fields of magnetite biosensors.  相似文献   

7.
Thermal decomposition of Zr/KClO4 priming compositions containing different concentration of additives, such as graphite, Fe2O3 and Al2O3 have been studied by DSC/TG techniques. The firing characteristics of these primer mixtures have also been examined by Bruceton test and by adiabatic calorimeter. The results of these experiments suggest that strong interaction has been occurred between KClO4 and Fe2O3 in the solid state. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Bimagnetic Pt3Co/Fe3O4 nanocomposite is synthesized in aqueous solution. The nanoparticles are characterized with TEM, FTIR, and magnetic measurements. The as‐synthesized nanocomposite exhibits ferromagnetic properties at room temperature due to the exchange coupling between Pt3Co and Fe3O4. Magnetic properties of Pt3Co/Fe3O4 nanoparticle can be tuned by varying of the molar ratio of iron to platinum. Pt3Co/Fe3O4 nanoparticles exhibit higher saturation magnetization when the molar ratio of iron to platinum is 1.  相似文献   

9.
In this study, we present kinetics of phenol dyes removal by SnO2/Fe3O4 nanoparticles in a photocatalytic reactor for optimization of this process. The effect of different concentrations of SnO2 5, 10, 15, 20% w/w on the photocatalytic reactor during removal of phenol red was investigated. The SnO2/Fe3O4 nanoparticles were synthesized by core–shell method. The results of XRD and TEM showed the successful synthesis of these nanoparticles. Several other methods were applied to synthesis of these nanoparticles but none of them succeeded. This process composed of two-stage. The first stage was absorption by iron oxide nanoparticles and second stage was photocatalytic by tin oxide nanoparticles that followed pseudo-second-order kinetic and first-order kinetic, respectively. Optimization of this process was done corresponding to the parameters affecting the process with design expert software. In order to determine the optimal values of each of the parameters and the optimal conditions of the process, parameters were introduced to response surface methodology.  相似文献   

10.
Regular octahedron Fe3O4 microcrystals have been synthesized by a hydrothermal process on a large scale directly Fe substrates for the first time. X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to investigate the novel fractal microcrystals. The results show that the regular octahedron Fe3O4 microcrystals can be obtained using this simple method. The size of microcrystals is evaluated to be from 2 to 20 μm. Moreover, one key fact has been found that the reaction temperature has a vital effect on the morphologies of the products.  相似文献   

11.
Today, cancer treatment is an important issue in the medical world due to the challenges and side effects of ongoing treatment procedures. Current methods can be replaced with targeted nano-drug delivery systems to overcome such side effects. In the present work, an intelligent nano-system consisting of Chitosan (Ch)/Gamma alumina (γAl)/Fe3O4 and 5-Fluorouracil (5-FU) was synthesized and designed for the first time in order to influence the Michigan Cancer Foundation-7 (MCF-7) cell line in the treatment of breast cancer. Physico-chemical characterization of the nanocarriers was carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), and scanning electron microscopy (SEM). SEM analysis revealed smooth and homogeneous spherical nanoparticles. The high stability of the nanoparticles and their narrow size distribution was confirmed by DLS. The results of the loading study demonstrated that these nano-systems cause controlled, stable, and pH-sensitive release in cancerous environments with an inactive targeting mechanism. Finally, the results of MTT and flow cytometry tests indicated that this nano-system increased the rate of apoptosis induction on cancerous masses and could be an effective alternative to current treatments.  相似文献   

12.
Cui YR  Hong C  Zhou YL  Li Y  Gao XM  Zhang XX 《Talanta》2011,85(3):1246-1252
Orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles were synthesized for cell separation. The Fe3O4@Au magnetic nanoparticles were synthesized by reducing HAuCl4 on the surfaces of Fe3O4 nanoparticles, which were further characterized in detail by TEM, XRD and UV-vis spectra. Anti-CD3 monoclonal antibody was orientedly bioconjugated to the surface of Fe3O4@Au nanoparticles through affinity binding between the Fc portion of the antibody and protein A that covalently immobilized on the nanoparticles. The oriented immobilization method was performed to compare its efficiency for cell separation with the non-oriented one, in which the antibody was directly immobilized onto the carboxylated nanoparticle surface. Results showed that the orientedly bioconjugated Fe3O4@Au MNPs successfully pulled down CD3+ T cells from the whole splenocytes with high efficiency of up to 98.4%, showing a more effective cell-capture nanostructure than that obtained by non-oriented strategy. This developed strategy for the synthesis and oriented bioconjugation of Fe3O4@Au MNPs provides an efficient tool for cell separation, and may be further applied to various fields of bioanalytical chemistry for diagnosis, affinity extraction and biosensor.  相似文献   

13.
Nanostructured hybrid materials containing Al2O3 were synthesized via a sol-gel method through hydrolysis and co-condensation reactions using trimethylsilyl isocyanate (TMSI) as a new silica source in the presence of tetramethoxysilane (TMOS) and three different quantities (10, 20 and 30 wt.%) of aluminum sec-butoxide (Al(OBusec)3 as a modifying agent. The xerogel nanostructured materials are pyrolyzed in nitrogen atmosphere in the temperature range from 400°C to 1100°C. The transformation of the xerogel hybrid networks into Al-Si oxycarbonitride materials has been investigated by XRD, FTIR, SEM, AFM, and 29Si MAS-NMR. To the best of our knowledge, the work reported here is the first synthesis of porous di-urethanesils modified with aluminum and one of the few examples of alumosilica oxycarbonitride materials   相似文献   

14.
《Analytical letters》2012,45(13):2111-2121
A functional composite of Fe3O4@SiO2-Au was prepared and used for latent fingerprint detection. Material characterization results confirmed the successful fabrication of the Fe3O4@SiO2-Au composite. In latent fingerprint detection, the Fe3O4@SiO2-Au composite provides a better performance than commercial copper powder and also gold nanoparticles. More importantly, the Fe3O4@SiO2-Au composite can be used in both powder and suspension forms, and also for common surfaces including glass, polyethylene bags, and paper. The favorable pH range (2.0–5.0) for the compositein finger marks detection is much wider than that of the traditional multi-metal deposition method (pH ranging from 2.0 to 3.0). The mechanism for the Fe3O4@SiO2-Au composite in fingerprint detection was explored and discussed. This study provides a favorable choice for a one-step deposition method for latent fingerprint detection.  相似文献   

15.
Fe2O3/SiO2 nanocomposites based on fumed silica A-300 (SBET = 337 m2/g) with iron oxide deposits at different content were synthesized using Fe(III) acetylacetonate (Fe(acac)3) dissolved in isopropyl alcohol or carbon tetrachloride for impregnation of the nanosilica powder at different amounts of Fe(acac)3 then oxidized in air at 400–900 °C. Samples with Fe(acac)3 adsorbed onto nanosilica and samples with Fe2O3/SiO2 including 6–17 wt% of Fe2O3 were investigated using XRD, XPS, TG/DTA, TPD MS, FTIR, AFM, nitrogen adsorption, Mössbauer spectroscopy, and quantum chemistry methods. The structural characteristics and phase composition of Fe2O3 deposits depend on reaction conditions, solvent type, content of grafted iron oxide, and post-reaction treatments. The iron oxide deposits on A-300 (impregnated by the Fe(acac)3 solution in isopropanol) treated at 500–600 °C include several phases characterized by different nanoparticle size distributions; however, in the case of impregnation of A-300 by the Fe(acac)3 solution in carbon tetrachloride only α-Fe2O3 phase is formed in addition to amorphous Fe2O3. The Fe2O3/SiO2 materials remain loose (similar to the A-300 matrix) at the bulk density of 0.12–0.15 g/cm3 and SBET = 265–310 m2/g.  相似文献   

16.
Reported here is the design of an electrochemical sensor for dopamine (DA) based on a screen print carbon electrode modified with a sulphonated polyether ether ketone-iron (III) oxide composite (SPCE-Fe3O4/SPEEK). L. serica leaf extract was used in the synthesis of iron (III) oxide nanoparticles (Fe3O4NPs). Successful synthesis of Fe3O4NP was confirmed through characterization using Fourier transform infrared (FTIR), ultraviolet–visible light (UV–VIS), X-ray diffractometer (XRD), and scanning electron microscopy (SEM). Cyclic voltammetry (CV) was used to investigate the electrochemical behaviour of Fe3O4/SPEEK in 0.1 M of phosphate buffer solution (PBS) containing 5 mM of potassium ferricyanide (III) solution (K3[Fe(CN)6]). An increase in peak current was observed at the nanocomposite modified electrode SPCE-Fe3O4/SPEEK) but not SPCE and SPCE-Fe3O4, which could be ascribed to the presence of SPEEK. CV and square wave voltammetry (SWV) were employed in the electroxidation of dopamine (0.1 mM DA). The detection limit (LoD) of 7.1 μM and 0.005 μA/μM sensitivity was obtained for DA at the SPCE-Fe3O4/SPEEK electrode with concentrations ranging from 5–50 μM. LOD competes well with other electrodes reported in the literature. The developed sensor demonstrated good practical applicability for DA in a DA injection with good resultant recovery percentages and RSDs values.  相似文献   

17.
In this study,the preparation of a new kind of magnetic and luminescent Fe3O4/CdTe nanocomposites was demonstrated. Superparamagnetic Fe3O4 nanoparticles were first synthesized by hydrothermal coprecipitation of ferric and ferrous ions,followed by the modification of their surfaces with tetramethylammonium hydroxide(TMAOH) and the chemical activation with aspartic acid.The surface-modified Fe3O4 nanoparticles were then covalently coated with CdTe quantum dots(QDs),which were modified with mercaptoacetic acid(MPA),to form the Fe3O4/CdTe magnetic and luminescent nanocomposites through the coordination of the amino groups on the surfaces of Fe3O4 and the carboxyl groups on CdTe QDs.The structure and properties of as-synthesized nanocomposites were characterized.It was indicated that the nanocomposites possessed structure with an average diameter of 40- 50 nm,yellow-green emission feature and room temperature ferro-magnetism.Both the fluorescence and UV-vis absorption spectra of the nanocomposites showed a blue shift comparing with those of CdTe QDs.The mechanism of the blue shift was presented.The nanocomposites retained the ferromagnetic property with a saturation magnetization of 8.9 emu/g.  相似文献   

18.
The Cu-ZnO-Cr2O3/SiO2 catalysts were prepared by impregnation method, which exhibited high activity for the dehydrogenation of 2-butanol to 2-butanone. These catalysts were characterized by means of XRD, EPR and BET. The experimental results indicated that (i) the valence states of copper play a key role, (ii) groups of copper atoms were the main active sites in this reaction, and (iii) copper oxide would lead to the condensation product of 5-methyl-3-heptanone.  相似文献   

19.
The effects of Al2O3 and SiO2 additives on the crystallization of calcium phosphate glasses were studied. When the Al2O3 content was higher than 7 mol%, surface devitrification occurred in the glasses. However, for glasses with Al2O3 contents higher than 10 mol%, bulk devitrification predominanted. For the glasses with SiO2, a surface devitrification mechanism predominanted. Non-isothermal DTA techniques were applied in order to establish the devitrification mechanism, and the kinetic parameters of crystal growth were obtained. The parameter m depends on the mechanism and morphology of devitrification of calcium phosphate, glass containing SiO2 as additive, the values of m being lower than 1.2. These results indicate that the devitrification is controlled by the reaction at the glass-crystal interface, or occurs from surface nuclei. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
To obtain a recyclable surface-enhanced Raman scattering (SERS) material, we developed a composite of Fe3O4\SiO2\Ag with core\shell\particles structure. The designed particles were synthesized via an ultrasonic route. The Raman scattering signal of Fe3O4 could be shielded by increasing the thickness of the SiO2 layer to 60 nm. Dye rhodamine B (RB) was chosen as probe molecule to test the SERS effect of the synthesized Fe3O4\SiO2\Ag particles. On the synthesized Fe3O4\SiO2\Ag particles, the characteristic Raman bands of RB could be observed when the RB solution was diluted to 5 ppm (1×10−5 M). Furthermore, the synthesized particles could keep their efficiency till four cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号