首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of solid-phase microextraction (SPME) for the determination of several organophosphorus flame retardants and plastizicers in water samples by gas chromatography-nitrogen phosphorous detection (GC-NPD) is evaluated. These compounds have a wide range of polarities and volatilities and require a thorough optimisation of the different SPME parameters. Considering also possible contamination and carryover sources, the best compromise microextraction conditions were found to be direct extraction of 22 ml samples, containing 300 mg/ml of NaCl, with a PDMS-DVB coated fibre at room temperature. Although equilibrium was not achieved, an extraction time of 40 min allowed obtaining a good sensitivity (quantification limits between 0.010 and 0.025 ng/ml), comparable to that achieved by solid-phase extraction (SPE) of 1l samples, producing both similar values of precision and accuracy. Furthermore, the SPME method has shown to be free of matrix effects, avoiding the need of employing the standard addition procedure for quantification, and was suitable for the determination of eight of the nine considered compounds. Only tris-(2-ethylhexyl)-phosphate was neither determinable by SPME nor by SPE. Finally, the application of the developed methodology to the analysis of wastewater samples, showed that important concentrations of these compounds (up to 10 ng/ml) have been detected in treated sewage water, being discharged into the aquatic environment.  相似文献   

2.
Hemimicelles and admicelles of cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC), adsorbed onto silica, were tested as sorbents for the solid phase extraction (SPE) of linear alkylbenzene sulfonate (LAS) homologues from environmental water samples. LASs were quantitatively retained on both surfactants due to high hydrophobic and ionic interactions, which led to the formation of analyte-extractant mixed aggregates. Parameters affecting the SPE of LASs were optimised. Recoveries of analytes from wastewater influent and effluent and river water samples ranged between 86 and 110%. Combination of SPE with liquid chromatography/mass spectrometry provided detection limits for the different LAS homologues of about 4 ng L(-1). The precision of the method, expressed as relative standard deviation, ranged from 5 to 9%. The method was applied to the analysis of LASs in wastewater and river samples using sample volumes between 10 and 25 mL. The LAS concentrations found ranged from 9 to 503 microg L(-1). No cleaning step was required to get accurate results.  相似文献   

3.
Solid-phase extraction (SPE) and solid-phase microextraction (SPME) were evaluated for the analysis of short-chain chlorinated paraffins (SCCPs) in water samples using gas chromatography coupled to negative chemical ionisation mass spectrometry (GC-NCI-MS). For SPE optimisation, four commercially available SPE cartridges were tested and several SPE parameters, such as the elution solvent, elution volume and breakthrough volume were studied. The best results were obtained with Varian Bond Elut-C18. In order to achieve a high selectivity in the determination of SCCPs, GC-NCI-MS was used. Quality parameters of the optimised SPE and SPME procedures were determined, and the best results were obtained for the SPE/GC-NCI-MS method with LODs of 5 and 20 ng l(-1) for tap and river water, respectively. This method was successfully applied to the analysis of SCCPs in river water samples at concentrations below the microg l(-1) level.  相似文献   

4.
A method for the determination of phenoxyalkanoic acids and other polar compounds in environmental water samples without pH adjustment before extraction has been developed. Recoveries were calculated from 500 ml of milliQ water spiked at the level of 0.5 ng/ml using solid-phase extraction (SPE) and HPLC-DAD. Different SPE materials (RP-C18, ENV+, ENV+-C8, SAX and Oasis HLB) were tested. After method optimization, 15 of the 16 compounds studied could be extracted with recoveries better than 70% on the most suitable copolymeric poly(divinylbenzene-co-N-vinylpyrrolidone) material (Oasis HLB cartridges).  相似文献   

5.
A high-performance liquid chromatography method for the determination of linear alkylbenzenesulphonates (LASs) in river waters has been developed. The ppb levels of LASs can be determined by reversed-phase high-performance liquid chromatography with ultraviolet detection after on-line anion-exchange concentration and successive injection. LASs were quantitatively concentrated on the anion-exchange precolumn and easily cleaned up from river water matrix, because of its specific affinity, for the anion-exchange resin. A weak non-polar reversed-phase column was useful for the determination of LASs. The relationships between concentration and summation of peak areas were linear from 10 to 200 ppb for total LAS concentrated from 5 ml of standard solutions. Overall recovery for total LAS was found to be 99%. Total LAS in the Tama River waters was determined to be around 100 ppb by the proposed method.  相似文献   

6.
In this study a direct solid-phase microextraction (SPME) procedure has been developed for the determination of carbofuran in water. Experimental parameters such as selection of SPME coating, effect of temperature, effect of salt addition and solvent desorption were studied and optimized. Analytical parameters such as linearity, precision, detection and quantitation limits, and matrix effects for solid-phase extraction (SPE) and SPME methods were evaluated for comparison purposes with the aim of selecting the most appropriate depending on the detection capabilities required. SPE and SPME were followed by high-performance liquid chromatography with diode-array detection, using a 50 x 4.6 mm I.D. guard column and a 150 x 4.6 mm I.D. analytical column, both packed with C18 silica. Both methods can be applied to real samples and give the same results, but SPE allows the detection of lower carbofuran concentrations (0.06 microg/L) as compared to  相似文献   

7.
An analytical procedure based on headspace solid-phase microextraction (SPME) followed by gas chromatography coupled to mass spectrometry in the electron impact mode has been developed for the determination of low-molecular-mass sulfides and disulfides in wastewater. Parameters affecting to the extraction of these volatile alkyl sulfides (VASs) with the SPME, such as the extraction temperature, sample volume, pH and the NaCl addition to the matrix, have been optimised using a polydimethylsiloxane-Carboxen fibre. The linear dynamic range was close to three orders of magnitude for all the studied compounds. Detection limits of 4 ng l(-1) for dimethyl sulfide, 0.7 ng l(-1) for ethylmethyl sulfide, 5 ng l(-1) for diethyl sulfide and 1 ng l(-1) for dimethyl disulfide were achieved, with a relative standard deviation between 4 and 6%. The developed analytical methodology was applied to determine those VASs in different wastewaters.  相似文献   

8.
A sensitive and solvent-free procedure for the determination of non-steroidal acidic anti-inflammatory drugs in water samples was optimized using solid-phase microextraction (SPME) followed by on-fiber silylation of the acidic compounds and gas chromatography-mass spectrometry (GC-MS) determination. Microextraction was carried out directly over the filtered water samples using a polyacrylate fiber. Derivatization was performed placing the SPME fiber, loaded with the extracted analytes, in the headspace of a vial containing 50 microl of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA). Derivatives were desorbed for 3 min in the GC injector. Influence of several parameters in the efficiency of microextraction (volume of sample, time, pH, type of fiber coating, etc.) and derivatization steps (time, temperature and volume of MTBSTFA) was systematically investigated. In the optimal conditions an excellent linearity over three orders of magnitude and quantification limits at the ng/l level (from 12 to 40 ng/l) were achieved. The proposed method was applied to the determination of acidic compounds in sewage water and results compared to those obtained using solid-phase extraction (SPE) followed by the derivatization of the compounds in the organic extract of the solid-phase extraction cartridge.  相似文献   

9.
This work presents a modified method to analyze linear alkylbenzenesulfonates (LASs) in water samples. The method involves extraction of samples by a graphitized carbon black (GCB) cartridge, and direct derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium (TAA) salts. The analytes were then identified and quantitated by ion-trap GC-MS. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for LAS residues, to quantitation at 0.1 microg/l in 200 ml of water samples. The retention effect of TAA salts in the injection port was not detected. Enhanced selected mass chromatograms of [M-55]+ ions of butylated C10-C13 LASs by electron impact ionization MS allows one to determine LAS residues at trace levels in environmental samples. Recovery of total LASs in spiked variety water samples ranged from 89 to 112% while RSDs ranged from 2 to 13%.  相似文献   

10.
A direct solid-phase microextraction (SPME) procedure has been developed and applied for the simultaneous determination of nonylphenol, nonylphenol mono- and diethoxylates and their brominated derivatives in raw and treated water at low microg l(-1) concentrations. Several parameters affecting the SPME procedure, such as extraction mode (headspace or direct-SPME), selection of the SPME coating, extraction time, addition of organic modifiers such as methanol and temperature were optimized. The divinylbenzene-carboxen-polydimethylsiloxane fiber was the most appropriate one for the determination of nonylphenol ethoxylates (NPEOs) and bromononylphenol ethoxylates (BrNPEOs) by SPME-GC-MS. The optimized method was linear over the range studied (0.11-2.5 microg l(-1)) and showed good precision, with RSD values between 4 and 15% and detection limits ranging from 30 to 150 ng l(-1) depending on the compound. The SPME procedure was compared with a solid-phase extraction-GC-MS method (C18 cartridge) for the analysis of NPEO and BrNPEOs in water samples. There was good agreement between the results from both methods but the SPME procedure showed some advantages such as lower detection limits, a shorter analysis time and the avoidance of organic solvents. The optimized SPME method was applied to determine nonylphenol and brominated metabolites in raw and treated water of Barcelona (NE Spain).  相似文献   

11.
固相微萃取与色谱联用方法分析水中12种有机氯化合物   总被引:18,自引:0,他引:18  
运用顶空固相微萃取与色谱闻用方法(HS-SPME-GC)对水中的残留有机氯化合物进行了分析。对影响HS-SPME-GC分析灵敏度的各种实验因素如涂层种类,萃取温度、平衡时间,离子浓度等进行了讨论并将该方法与固相萃取法(SPE),液液萃取法(LLE)作了对比,同时考察了常见环境共存污染物直链烷基苯磺酸钠(LAS)对几种方法的影响。  相似文献   

12.
A comprehensive method for the trace determination of four stilbene-type disulfonate and one distyrylbiphenyl-type fluorescent whitening agents (FWAs) in environmental water samples was developed and validated. Various solid-phase extraction (SPE) cartridges were investigated. The newly developed Oasis WAX (weak mixed-mode anion exchange and reversed-phase sorbent) SPE cartridge provides the optimal sample extraction results. The analytes were then identified and quantitated by liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS-MS) in negative ionization mode, applying di-n-hexylammonium acetate (DHAA) as the ion-pairing reagent in mobile phase. Limits of quantitation (LOQs) were established between 4 and 18 ng/l in 50 ml of water samples. Intrabatch and interbatch precision with their accuracy at two concentration levels were also investigated. Precision for these five FWAs, as indicated by RSD, proved to be less than 13 and 11%, respectively, for intra- and interbatch. Accuracy, expressed as the mean recovery, was between 68 and 97%. The method was finally applied to environmental water samples, showing the occurrence of five FWAs in both river water and wastewater treatment plant (WWTP) effluent samples.  相似文献   

13.
This paper deals with comparison of efficiency of extraction techniques (solid-phase extraction, SPE and solid-phase microextraction, SPME) used for extraction of nitrate esters (ethyleneglycoldinitrate, EGDN and nitroglycerin, NG), representing the first step of the method of quantitative determination of trace concentrations of nitrate esters in water samples. EGDN and NG are subsequently determined by means of high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Optimization of SPE and SPME conditions was carried out using model water samples. Seven SPE cartridges were tested and the conditions were optimized (type of sorbent, type and volume of solvent to be used as eluent). For both nitrate esters the limit of detection (LOD) and the limit of quantification (LOQ) obtained using SPE/HPLC-UV were 0.23 microg mL(-1) and 0.70 microg mL(-1), respectively. Optimization of SPME conditions: type of SPME fibre (four fibres were tested), type and time of sorption/desorption, temperature of sorption. PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre coating proved to be suitable for extraction of EGDN and NG. For this fibre the LOD and the LOQ for both nitrate esters were 0.16 microg mL(-1) and 0.50 microg mL(-1), respectively. Optimized methods SPE/HPLC-UV and SPME/HPLC-UV were then used for quantitative determination of nitrate esters content in real water samples from the production of EGDN and NG.  相似文献   

14.
A solid-phase microextraction (SPME) method has been developed to determine two methylated arsenic species in human urine samples by GC-MS. The direct extraction of the methyl arsenic compounds by SPME after thioglycol methylate derivatization was studied. Direct extraction with SPME was suitable for the determination of trace levels of dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in urine samples. Four different commercial SPME fibers were tested for the extraction of methyl arsenic compounds, and the best results were obtained using the polydimethylsiloxane coating. The extraction and desorption time profiles of DMA and MMA were determined. The detection limits for DMA and MMA using the SPME-GC-MS method were 0.12 and 0.29 ng/ml, respectively. The method is linear in the 1 to 200 ng/ml range.  相似文献   

15.
Alkylthiols are very reactive and highly volatile compounds, and thus it is difficult to determine these in the water phase. In the present work, an in situ derivatization step prior to solid-phase microextraction (SPME) has been developed for their determination in water samples. The dinitrobenzylation reaction was selected because the high chemical stability of the corresponding thioethers formed provides a significant increase in the distribution coefficient between the SPME fibre and the aqueous phase, and a potential increase in the selectivity and sensitivity. Therefore, different derivatization reaction conditions (i.e. pH, temperature, reaction time and derivatizating reagent concentration) have been studied. Then, the main parameters affecting to the SPME process, that is coating selection, extraction time profile, extraction and desorption temperatures, have been optimized. Finally, a method based on a simple 2,4-dinitrophenylation reaction at pH 8–10, in 60?min at 75°C, coupled to direct SPME using PDMS-DVB fibres at 30°C for 45?min is proposed. The performance of the method provided a good linearity and precision data, and the detection limits were in the low ng?L?1 level.  相似文献   

16.
A solid-phase extraction (SPE) method was developed for the simultaneous extraction of dicarboxylic acids and diols formed during hydrolysis of poly(butylene succinate), PBS, and poly(butylene adipate), PBA. Four commercial non-polar SPE columns, three silica based: C8, C18, C18 (EC), and one resin based: ENV+, were tested for the extraction of succinic acid, adipic acid and 1,4-butanediol, the expected final hydrolysis products of PBS and PBA. ENV+ resin was chosen as a solid-phase, because it displayed the best extraction efficiency for 1,4-butanediol and succinic acid. Linear range for the extracted analytes was 1-500 ng/microl for adipic acid and 2-500 ng/microl for 1,4-butanediol and succinic acid. Detection and quantification limits for the analytes were between 1-2 and 2-7 ng/microl, respectively, and relative standard deviations were between 3 and 7%. Good repeatability and low detection limits made the developed SPE method and subsequent gas chromatography-mass spectrometry (GC-MS) analysis a sensitive tool for identification and quantification of hydrolysis products at early stages of degradation.  相似文献   

17.
A simple and reliable sample methodology based on simultaneous ultrasonic extraction, sulfuric acid clean-up and headspace solid-phase microextraction (SPME)-gas chromatography-mass spectrometry has been developed as an advantageous analytical tool for the determination of seven polychlorinated biphenyl congeners in bird livers at low levels. The influence of several parameters on the efficiency of the proposed method was systematically investigated. The clean-up efficiency of sulfuric acid treatment was tested and compared with those of column chromatography (Flosiril, silica gel and alumina) and solid-phase extraction (SPE) (Supelclean ENVI-Carb cartridge) procedures. The use of sulfuric acid in the clean-up step prior to headspace solid-phase microextraction analysis allows the removal of interfering matrix compounds present in the liver extracts that would otherwise cause severe ionization suppression of the polychlorinated biphenyls (PCBs) during the ionization process. The optimized method had good linearity (R2>0.99) over the range studied (5-500 ng/g wet weight) and showed satisfactory level of precision, with RSD values lower than 10.6%. The obtained relative recoveries ranged between 63 and 94%. The limits of detection (0.06-0.63 ng/g wet weight) were low enough to check for harmful levels of polychlorinated biphenyls in biological samples, and were well below most of the restrictive limits established by European Union regulations. The method was found to be reliable under the operational conditions proposed and was applied successfully to the analysis of individual polychlorinated biphenyls in liver tissues. The results obtained from five bird species from Greece revealed the presence of the target compounds in all samples analyzed, at levels ranging between 0.54 and 39.45 ng/g wet weight.  相似文献   

18.
A high-performance liquid chromatography/electrospray ionization ion trap mass spectrometry (HPLC/ESI-MSn) method has been developed for the trace determination of phytoestrogens in aquatic environmental samples. The method includes solid-phase extraction (SPE) and analysis using liquid chromatography/electrospray ionization ion trap mass spectrometry. The aquatic environmental samples, influent of a wastewater treatment plant (WWTP) and creek water, were adjusted to pH approximately 5 before extraction. The analyzed phytoestrogens were identified by an MSn method and quantified against a deuterated internal standard (genistein-3',5',6,8-D4). In negative ion mode, 0.1% formic acid was employed in acetonitrile/water mobile phase. The method detection limits ranged from 0.5 to 10 ng/L in WWTP influent and from 0.1 to 5 ng/L in creek water. Average SPE recoveries for the analyzed phytoestrogens ranged from 85 to 95%, with a relative standard deviation (RSD) (%) ranging from 3.9 to 6.5. The concentrations of the six analyzed phytoestrogens varied from 0.2 to 600 ng/L with high levels of enterolignans (enterolactone and enterodiol) found in the collected wastewater. The method is shown to be suitable for the determination of phytoestrogens in aquatic environmental samples at nano- and sub-nanogram per liter levels.  相似文献   

19.
J Riu  D Barceló 《The Analyst》2001,126(6):825-828
Linear alkylbenzene sulfonates (LAS) were determined by solid-phase extraction (SPE), followed by capillary electrophoresis and mass spectrometry detection (CE-MS). The linear range of the proposed method varied from 33 to 316 and from 215 to 2057 micrograms L-1, depending on the compound, with limits of detection ranging from 4.4 to 23 micrograms L-1 when 200 ml of wastewater were preconcentrated. The analysis and confirmation of the polar carboxylic metabolites of LAS, the sulfophenyl carboxylic acids (SPC) was also achieved, and their presence was detected in both, influent and effluents of the sewage treatment plant (STP). [M - H]- ions were used for CE-MS confirmation and quantification. CE-MS diagnostic ions were the same ones used in LC-electrospray (ESI)-MS and corresponded to m/z 297, 311, 325 and 339 for C10LAS, C11LAS, C12LAS and C13LAS, respectively. For SPC identification, diagnostic ions corresponded to m/z 215 to 369 (with 14 mass unit steps) for C2 to C13SPC, respectively. LAS were determined in wastewater samples of the influent and effluent of three sewage treatment plants (STP), two of them using biological treatment with secondary settlement and receiving mainly domestic wastewater whereas one of the plants was operated with physiochemical treatment and received mainly industrial wastewater. The concentration levels of total LAS varied from 1000 to 1900 micrograms L-1 in the influents of STP, whereas in the effluents the concentrations varied from 125 to 360 micrograms L-1.  相似文献   

20.
A method was developed for the extraction of seven N-nitrosamine compounds from water by solid-phase microextraction (SPME). The method developed requires a total analysis time of only 1.25 h for both extraction and detection (versus 3-20 h for other isolation techniques). Three gas chromatography (GC) detection systems were tested with the SPME method, nitrogen chemiluminesence detection (NCD), nitrogen-phosphorus detection (NPD) and chemical ionization mass spectrometry (CI-MS), with method detection limits (MDLs) found in the ng/L range. This method was used to analyze wastewater samples and showed excellent selectivity of extraction. The detection limits of this method for N-nitrosodimethylamine (NDMA) range from 30 to 890 ng/L as a function of detector type. The excellent selectivity of SPME in addition to the fast analysis time would make this method ideal for general surveys, wastewater analysis and laboratory studies (e.g. degradation kinetics or formation potential).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号