首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Factors affecting the electrochemical and spectroelectrochemical properties of diruthenium(III,II) complexes containing four unsymmetrical bridging ligands are reported for seven related compounds which were isolated in one or two of the four possible isomeric forms. The investigated compounds are represented as Ru(2)(2-CH(3)ap)(4)Cl, Ru(2)(2,5-F(2)ap)(4)Cl, Ru(2)(2,6-F(2)ap)(4)Cl, and Ru(2)(2,4,6-F(3)ap)(4)Cl where 2-CH(3)ap, 2,5-F(2)ap, 2,6-F(2)ap, and 2,4,6-F(3)ap are, respectively, the 2-(2-methylanilino)pyridinate anion, the 2-(2,5-difluoroanilino)pyridinate anion, the 2-(2,6-difluoroanilino)pyridinate anion, and the 2-(2,4,6-trifluoroanilino)pyridinate anion. Ru(2)(2-CH(3)ap)(4)Cl and Ru(2)(2,5-F(2)ap)(4)Cl exist only in a (4,0) conformation while Ru(2)(2,4,6-F(3)ap)(4)Cl is present in both (3,1) and (4,0) isomeric forms. Ru(2)(2,6-F(2)ap)(4)Cl also exists in two isomeric forms, but only the (3,1) isomer was generated in sufficient quantities to be isolated and structurally characterized. This series of seven closely related metal-metal bonded complexes thus provides the first possibility to systematically examine how differences in position and number of the electron-donating or electron-withdrawing groups on the anionic bridging ligands might be related to the electronic properties and structural features of the compound as well as the type and number of geometric isomers which are formed. Each diruthenium derivative undergoes three one-electron transfers in CH(2)Cl(2) containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). The first reduction and first oxidation products were characterized by thin-layer UV-vis spectroelectrochemistry, and the spectroscopic data, along with E(1/2) values, were then related via linear free energy relationships to the type of isomer and/or position of the electron-donating or electron-withdrawing substituents on the anionic ap bridge. The electrogenerated Ru(2)(6+) and Ru(2)(4+) forms of the compounds were assigned on the basis of electrochemical and UV-vis spectroscopic data as having the electronic configuration sigma(2)pi(4)delta(2)pi(2) and sigma(2)pi(4)delta(2)pi(3)delta, respectively, and seemed to be independent of the isomer type ((3,1) or (4,0)). The spectral and electrochemical properties of the compounds both vary substantially as a function of the isomer type, but this is not reflected in the structural features of the compounds which are within the range of what is seen for other Ru(2)(5+) species described in the literature. The Ru-Ru bond lengths of the four structurally characterized (4,0) isomers of the ap complexes range from 2.275 to 2.296 A while those of the three structurally characterized (3,1) isomers of ap derivatives fall in the range 2.284-2.286 A and show no significant difference among the three compounds. The Ru-Cl bond lengths of the (3,1) isomers do not vary significantly with the bridging ligand and range from 2.458 to 2.471 A whereas those of the (4,0) isomers range from 2.437 to 2.487 A and show larger variations among the compounds. The Ru-Ru-Cl bond angle is virtually independent of the bridging ligand in the case of the (4,0) isomers but decreases with the electron-withdrawing effect of the substituent in the case of the (3,1) isomers.  相似文献   

2.
Three Ru2(5+) diruthenium complexes, (4,0) Ru2(2-CH3ap)4Cl, (3,1) Ru2(2-Fap)4Cl, and (3,1) Ru2(2,4,6-F3ap)4Cl where ap is the 2-anilinopyridinate anion, were examined as to their electrochemical and spectroelectrochemical properties in five different nonaqueous solvents (CH2Cl2, THF, PhCN, DMF, and DMSO). Each compound undergoes a single one-electron metal-centered oxidation in THF, DMF, and DMSO and two one-electron metal-centered oxidations in CH2Cl2 and PhCN. The three diruthenium complexes also undergo two reductions in each solvent except for CH2Cl2, and these electrode processes are assigned as Ru2(5+/4+) and Ru2(4+/3+). Each neutral, singly reduced, and singly oxidized species was characterized by UV-vis thin-layer spectroelectrochemistry, and the data are discussed in terms of the most probable electronic configuration of the compound in solution. The three neutral complexes contain three unpaired electrons as indicated by magnetic susceptibility measurements using the Evans method (3.91-3.95 muB), and the electronic configuration is assigned as sigma2pi4delta2pi(*2)delta, independent of the solvent. The three singly oxidized compounds have two unpaired electrons in CD2Cl2, DMSO-d6, or CD3CN (2.65-3.03 muB), and the electronic configuration is here assigned as sigma2pi4delta2pi(*2). The singly reduced compound also has two unpaired electrons (2.70-2.80 muB) in all three solvents, consistent with the electronic configuration sigma2pi4delta2pi(*2)delta(*2) or sigma2pi4delta2pi(*3)delta*. Finally, the overall effect of solvent on the number of observed redox processes is discussed in terms of solvent binding, and several formation constants were calculated.  相似文献   

3.
Ru(2)(Fap)(4)Cl and Ru(2)(Fap)(4)(NO)Cl, where Fap is the 2-(2-fluoroanilino)pyridinate anion, were synthesized, and their structural, electrochemical, and spectroscopic properties were characterized. Ru(2)(Fap)(4)Cl, which was obtained by reaction between Ru(2)(O(2)CCH(3))(4)Cl and molten HFap, crystallizes in the monoclinic space group P2(1)/c, with a = 11.2365(4) A, b = 19.9298(8) A, c = 19.0368(7) A, beta = 90.905(1) degrees, and Z = 4. The presence of three unpaired electrons on the Ru(2)(5+) core and the 2.2862(3) A Ru-Ru bond length for Ru(2)(Fap)(4)Cl are consistent with the electronic configuration (sigma)(2)(pi)(4)(delta)(2)(pi*)(2)(delta*)(1). The reaction between Ru(2)(Fap)(4)Cl and NO gas yields Ru(2)(Fap)(4)(NO)Cl, which crystallizes in the orthorhombic space group Pbca, with a = 10.0468(6) A, b = 18.8091(10) A, c = 41.7615(23) A, and Z = 8. The Ru-Ru bond length of Ru(2)(Fap)(4)(NO)Cl is 2.4203(8) A, while its N-O bond length and Ru-N-O bond angle are 1.164(8) A and 155.8(6) degrees, respectively. Ru(2)(Fap)(4)(NO)Cl can be formulated as a formal Ru(2)(II,II)(NO(+)) complex with a linear Ru-N-O group, and the proposed electronic configuration for this compound is (sigma)(2)(pi)(4)(delta)(2)(pi*)(3)(delta*)(1). The binding of NO to Ru(2)(Fap)(4)Cl leads to some structural changes of the Ru(2)(Fap)(4) framework and a stabilization of the lower oxidation states of the diruthenium unit. Also, IR spectroelectrochemical studies of Ru(2)(Fap)(4)(NO)Cl show that NO remains bound to the complex upon reduction and that the first reduction involves the addition of an electron on the diruthenium core and not on the NO axial ligand.  相似文献   

4.
The electrochemistry and spectroelectrochemistry of a novel series of mixed-ligand diruthenium compounds were examined. The investigated compounds having the formula Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl where x = 1-3 and Fap is 2-(2-fluoroanilino)pyridinate anion were made from the reaction of Ru(2)(CH(3)CO(2))(4)Cl with 2-(2-fluoroanilino)pyridine (HFap) in refluxing methanol. The previously characterized Ru(2)(Fap)(4)Cl as well as the three newly isolated compounds represented as Ru(2)(CH(3)CO(2))(Fap)(3)Cl (1), Ru(2)(CH(3)CO(2))(2)(Fap)(2)Cl (2), and Ru(2)(CH(3)CO(2))(3)(Fap)Cl (3) possess three unpaired electrons with a Ru(2)(5+) dimetal core. Complexes 1 and 2 have well-defined Ru(2)(5+/4+) and Ru(2)(5+/6+) redox couples in CH(2)Cl(2), but 3 exhibits a more complicated electrochemical behavior due to equilibria involving association or dissociation of the anionic chloride axial ligand on the initial and oxidized or reduced forms of the compound. The E(1/2) values for the Ru(2)(5+/4+) and Ru(2)(5+/6+) processes vary linearly with the number of CH(3)CO(2)(-) bridging ligands on Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl and plots of reversible half-wave potentials vs the number of acetate groups follow linear free energy relationships with the largest substituent effect being observed for the oxidation. The major UV-visible band of the examined compounds in their neutral Ru(2)(5+) form is located between 550 and 800 nm in CH(2)Cl(2) and also varies linearly with the number of CH(3)CO(2)(-) ligands on Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl. The electronic spectra of the singly oxidized and singly reduced forms of each diruthenium species were characterized by UV-visible spectroelectrochemistry in CH(2)Cl(2).  相似文献   

5.
Two isothiocyanate diruthenium complexes, (3,1) Ru2(F3ap)4(NCS) 1 and (3,1) Ru2(F3ap)3(F2Oap)(NCS)2 (where F3ap=2,4,6-trifluoroanilinopyridinate anion), were synthesized from (3,1) Ru2(F3ap)4Cl and SCN(-) under different experimental conditions. Each compound was examined as to its structural, electrochemical, spectroscopic, and magnetic properties. Compound 1 contains three unpaired electrons as its parent compound but 2 is diamagnetic. The X-ray molecular structures of 1 and 2 reveal that the NCS group is coordinated to the dimetal unit via nitrogen in both compounds with the Ru-N-C bond angle being 176.5 degrees for 1 and 166.0 degrees for 2. An elongation of the Ru-Ru bond distance and a shortening of both the Ru-Np (p=pyridyl) and the Ru-Na (a=anilino) bond lengths is seen upon going from (3,1) Ru2(F3ap)4Cl to 2, but the conversion of (3,1) Ru2(F3ap)4Cl to 1 does not affect significantly structural features of the Ru2(L) 4 framework. Compound 1 undergoes one reduction and two oxidations, all three of which involve the dimetal core, whereas 2 undergoes two metal-centered reductions, one metal-centered oxidation, and one ligand-based oxidation due to the presence of the F2Oap ligand on the Ru2 complex. The reactivity of 1 with SCN(-) was also investigated.  相似文献   

6.
Substituent and isomer effects on the structural, spectroscopic, (UV-visible and ESR) and electrochemical properties of dirhodium(III,II) complexes containing four identical unsymmetrical bridging ligands are reported for seven related compounds of the type Rh(2)(L)(4)Cl where L = 2-(2-fluoroanilino)pyridinate (2-Fap), 2-(2,6-difluoroanilino)pyridinate (2,6-F(2)ap), 2-(2,4,6-trifluoroanilino)pyridinate (2,4,6-F(3)ap), or 2-(2,3,4,5,6-pentafluoroanilino)pyridinate (F(5)ap) anion. Rh(2)(2-Fap)(4)Cl exists only in a (4,0) isomeric conformation while Rh(2)(2,6-F(2)ap)(4)Cl, Rh(2)(2,4,6-F(3)ap)(4)Cl, and Rh(2)(F(5)ap)(4)Cl exist as both (4,0) and (3,1) isomers. It had earlier been demonstrated that Rh(2)(L)(4)Cl complexes can adopt different geometric conformations of the bridging ligands, but the current study provides the first example where two geometric isomers of Rh(2)(5+) complexes are obtained for one compound using the same synthetic procedure. The synthesis, structural, spectroscopic, and/or electrochemical properties of (3,1) Rh(2)(2,6-F(2)ap)(4)CN and (4,0) Rh(2)(2,4,6-F(3)ap)(4)(C triple bond C)(2)Si(CH(3))(3) are also reported and the data on these compounds is discussed in light of their parent complexes, (3,1) Rh(2)(2,6-F(2)ap)(4)Cl and (4,0) Rh(2)(2,4,6-F(3)ap)(4)Cl.  相似文献   

7.
Eleven different Ru(2)(4+) and Ru(2)(3+) derivatives are characterized by thin-layer FTIR and UV-visible spectroelectrochemistry under a CO atmosphere. These compounds, which were in-situ electrogenerated from substituted anilinopyridine complexes with a Ru(2)(5+) core, are represented as Ru(2)(L)(4)Cl where L = 2-CH(3)ap, ap, 2-Fap, 2,3-F(2)ap, 2,4-F(2)ap, 2,5-F(2)ap, 3,4-F(2)ap, 3,5-F(2)ap, 2,4,6-F(3)ap, or F(5)ap. The Ru(2)(5+) complexes do not axially bind CO while mono- and bis-CO axial adducts are formed for the Ru(2)(4+) and Ru(2)(3+) derivatives, respectively. Six of the eleven investigated compounds exist in a (4,0) isomeric form while five adopt a (3,1) geometric conformation. These two series of compounds thus provide a large enough number of derivatives to examine trends and differences in the spectroscopic data of the two types of isomers in their lower Ru(2)(4+) and Ru(2)(3+) oxidation states. UV-visible spectra of the Ru(2)(4+) derivatives and IR spectra of the Ru(2)(3+) complexes under CO are both isomer dependent, thus suggesting that these data can be used to reliably predict the isomeric form, i.e., (3,1) or (4,0), of diruthenium complexes containing four unsymmetrical substituted anilinopyridinate bridging ligands; this was confirmed by X-ray crystallographic data for seven compounds whose structures were available.  相似文献   

8.
Reaction of the cyanoruthenate anions [Ru(bpym)(CN)4]2- and [[Ru(CN)4]2(mu-bpym)]4- (bpym = 2,2'-bipyrimidine) with lanthanide(III) salts resulted in the crystallization of coordination networks based on Ru-CN-Ln bridges. Four types of structure were obtained: [Ru(bpym)(CN)4][Ln(NO3)(H2O)5] (Ru-Ln; Ln = Sm, Nd, and Gd) are one-dimensional helical chains; [Ru(bpym)(CN)4]2[Ln(NO3)(H2O)2][Ln(NO3)(0.5)(H2O)(5.5)](NO3)(0.5).5.5H2O (Ru-Ln; Ln = Er and Yb) are two-dimensional sheets containing cross-linked chains based on Ru2Ln2(mu-CN)4 diamond units, which are linked into one-dimensional chains via shared Ru atoms; [[Ru(CN)4]2(mu-bpym)][Ln(NO3)(H2O)5]2.3H2O (Ru2-Ln; Ln = Nd and Sm) are one-dimensional ladders with parallel Ln-NC-Ru-CN-Ln-NC strands connected by the bipyrimidine "cross pieces" acting as rungs on the ladder; and [[Ru(CN)4]2(mu-bpym)][Ln(H2O)6](0.5)[Ln(H2O)4](NO3)(0.5).nH2O (Ru2-Ln; Ln = Eu, Gd, and Yb; n = 8.5, 8.5, and 8, respectively) are three-dimensional networks in which two-dimensional sheets of Ru2Ln2(mu-CN)4 diamonds are connected via cyanide bridges to Ln(III) ions between the layers. Whereas Ru-Gd shows weak triplet metal-to-ligand charge-transfer (3MLCT) luminescence in the solid state from the Ru-bipyrimidine chromophore, in Ru-Nd, Ru-Er, and Ru-Yb, the Ru-based emission is quenched, and all of these show, instead, sensitized lanthanide-based near-IR luminescence following a Ru --> Ln energy transfer. Similarly, Ru2-Nd and Ru2-Yb show lanthanide-based near-IR emission following excitation of the Ru-bipyrimidine chromophore. Time-resolved luminescence measurements suggest that the Ru --> Ln energy-transfer rate is faster (when Ln = Yb and Er) than in related complexes based on the [Ru(bipy)(CN)4]2- chromophore, because the lower energy of the Ru-bpym 3MLCT provides better spectroscopic overlap with the low-energy f-f states of Yb(III) and Er(III). In every case, the lanthanide-based luminescence is relatively short-lived as a result of the CN oscillations in the lattice.  相似文献   

9.
Reaction of Mo(2)Cl(4)(dppm)(2) (dppm = bis(diphenylphosphino)methane) with 6 equiv of [n-Bu(4)N][CN] or [Et(4)N][CN] in dichloromethane yields [n-Bu(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (1) and [Et(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (2), respectively. The corresponding one- and two-electron oxidation products [n-Bu(4)N][Mo(2)(CN)(6)(dppm)(2)] (3) and Mo(2)(CN)(6)(dppm)(2) (4)were prepared by reactions of 1 with the oxidant NOBF(4). Single-crystal X-ray structures of 2.2CH(3)CN, 3.2CH(3)CN.2H(2)O, and 4.2CH(3)NO(2) were performed, and the results confirmed that all three complexes contain identical ligand sets with trans dppm ligands bisecting the Mo(2)(mu-CN)(2)(CN)(4) equatorial plane. The binding of the bridging cyanide ligands is affected by the oxidation state of the dimolybdenum core as evidenced by an increase in side-on pi-bonding overlap of the mu-CN in going from 1 to 4. The greater extent of pi-donation into Mo orbitals is accompanied by a lengthening of the Mo-Mo distance (2.736(1) A in Mo(2)(II,II) (2), 2.830(1) A in Mo(2)(II,III) (3), and 2.936(1) A in Mo(2)(III,III) (4)). A computational study of the closed-shell members of this homologous series, [Mo(2)(CN)(6)(dppm)(2)](n)() (n = 2-, 0), indicates that the more pronounced side-on pi-donation evident in the X-ray structure of 4 leads to significant destabilization of the delta orbital and marginal stabilization of the delta() orbitals with respect to nearly degenerate delta and delta orbitals in the parent compound, 2. The loss of delta contributions combined with the reduced orbital overlap due to higher charges on molybdenum centers in oxidized complexes 3 and 4 is responsible for the observed increase in the length of the Mo-Mo bond.  相似文献   

10.
The complex dication of the diruthenium(II) compound {(mu-tppz)[Ru(bik)Cl]2}(ClO4)2 can be oxidized and reduced in two one-electron steps each. In CH3CN/0.1 M Bu4NPF6, the odd-electron intermediates{(mu-tppz)[Ru(bik)Cl]2}n+, n=1 and 3, have comproportionation constants of 7x10(8) and 1x10(5), respectively. Both exhibit near-infrared absorptions, in the case of n=3 the 1640 nm band (epsilon=1200 M-1 cm-1, Deltanu1/2=1560 cm-1) is attributed to an intervalence charge-transfer transition. While the mixed-valent intermediate (n=3) is EPR silent even at 4 K, the n=1 form shows g(parallel) 2.005 and g( perpendicular) 1.994 at that temperature, signifying a diruthenium(II) complex of the tppz*- radical anion. The variation of energy and intensity of nuCO and of the ring vibration band around 1590 cm-1 has been monitored not only for {(mu-tppz)[Ru(bik)Cl]2}n+, n=0-4, but also for the mononuclear {(tppz)Ru(bik)Cl}n+, n=0-2. In the dinuclear complex the carbonyl stretching bands of the spectator ligand bik are shifted by about 15 cm-1 on each one-electron-transfer step, increasing with the positive charge. The mixed-valent {(mu-tppz)[Ru(bik)Cl]2}3+ shows a perceptibly broader nuCO band, suggesting incomplete valence averaging (partial localization).  相似文献   

11.
Chen WZ  Ren T 《Inorganic chemistry》2003,42(26):8847-8852
Metathesis reactions between Ru(2)(DMBA)(4)Cl(2) (DMBA = N,N'-dimethylbenzamidinate) and MX (M = Na and K) yielded bis-adduct derivatives Ru(2)(DMBA)(4)X(2) (X = CN (1), N(3) (2), N(CN)(2) (3)). Metathesis reactions between Ru(2)(DMBA)(4)(NO(3))(2) and KI resulted in Ru(2)(DMBA)(4)I(2) (4). Compound 1 is diamagnetic, while compounds 2-4 are paramagnetic (S = 1). Both compounds 1 and 2 undergo two reversible one-electron processes, an oxidation and a reduction, while compound 3 features a quasireversible reduction. Single-crystal X-ray diffraction studies revealed that the Ru-Ru bond lengths are 2.4508(9), 2.3166(7), 2.304[1], and 2.328(1) A for compounds 1-4, respectively. Structural and electrochemical data clearly indicate that the axial ligands impart a significant influence on the electronic structures of diruthenium species.  相似文献   

12.
Four mixed-valent ruthenium diphosphonates, namely, Na(4)[Ru(2)(hedp)(2)X]x16H(2)O [X = Cl (1), Br (2)], K(3)[Ru(2)(hedp)(2)(H(2)O)(2)]x6H(2)O (3), and Na(7)[Ru(2)(hedp)(2)Fe(CN)(6)]x24H(2)O (4), where hedp represents 1-hydroxyethylidenediphosphonate [CH(3)C(OH)(PO(3))(2)](4-), were synthesized and structurally characterized. Compounds 1, 2, and 4 show linear chain structures in which the mixed-valent [Ru(2)(hedp)(2)](3-) dimers are linked by X(-) or [Fe(CN)(6)](4-) bridges. Compound 3 contains discrete species of [Ru(2)(hedp)(2)(H(2)O)(2)](3-) where the axial positions of [Ru(2)(hedp)(2)](3-) paddlewheel are terminated by water molecules. Magnetic studies show that significant antiferromagnetic exchanges are mediated between the [Ru(2)(hedp)(2)](3-) (S = 3/2) units through halide bridges in compounds 1 and 2.  相似文献   

13.
Two enantiomers of [Bu(4)N](3)[Cu(3)(mnt)(3)] () formed by Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2-)) and CuCl in a 1 : 1 molar ratio react further with MCl (M = Cu or Ag) involving both the enantiomers of to produce the larger complex, [Bu(4)N](4)[Cu(6)M(2)(mnt)(6)] (M = Cu (2), Ag (3)) from which the capped Cu(+) or Ag(+) ion can readily be removed by Bu(4)NX (X = Cl, Br), reverting or back to . Such reversal does not work with non-coordinating anions like BF(4)(-), ClO(4)(-) and PF(6)(-).  相似文献   

14.
Chloro complexes [RuCl(N-N)P3]BPh4 (1-3) [N-N = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen; 5,5'-dimethyl-2,2'-bipyridine, 5,5'-Me2bpy; P = P(OEt)3, PPh(OEt)2 and PPh2OEt] were prepared by allowing the [RuCl4(N-N)].H2O compounds to react with an excess of phosphite in ethanol. The bis(bipyridine) [RuCl(bpy)2[P(OEt)3]]BPh4 (7) complex was also prepared by reacting RuCl2(bpy)2.2H2O with phosphite and ethanol. Treatment of the chloro complexes 1-3 and 7 with NaBH4 yielded the hydride [RuH(N-N)P3]BPh4 (4-6) and [RuH(bpy)2P]BPh4 (8) derivatives, which were characterized spectroscopically and by the X-ray crystal structure determination of [RuH(bpy)[P(OEt)3]3]BPh4 (4a). Protonation reaction of the new hydrides with Br?nsted acid was studied and led to dicationic [Ru(eta2-H2)(N-N)P3]2+ (9, 10) and [Ru(eta(2-H2)(bpy)2P]2+ (11) dihydrogen derivatives. The presence of the eta2-H2 ligand was indicated by a short T(1 min) value and by the measurements of the J(HD) in the [Ru](eta2-HD) isotopomers. From T(1 min) and J(HD) values the H-H distances of the dihydrogen complexes were also calculated. A series of ruthenium complexes, [RuL(N-N)P3](BPh4)2 and [RuL(bpy)2P](BPh4)2 (P = P(OEt)3; L = H2O, CO, 4-CH3C6H4NC, CH3CN, 4-CH3C6H4CN, PPh(OEt)2], was prepared by substituting the labile eta2-H2 ligand in the 9, 10, 11 derivatives. The reactions of the new hydrides 4-6 and 8 with both mono- and bis(aryldiazonium) cations were studied and led to aryldiazene [Ru(C6H5N=NH)(N-N)P3](BPh4)2 (19, 21), [[Ru(N-N)P3]2(mu-4,4'-NH=NC6H4-C6H4N=NH)](BPh4)4 (20), and [Ru(C6H5N=NH)(bpy)2P](BPh4)2 (22) derivatives. Also the heteroallenes CO2 and CS2 reacted with [RuH(bpy)2P]BPh4, yielding the formato [Ru[eta1-OC(H)=O](bpy)2P]BPh4 and dithioformato [Ru[eta1-SC(H)=S](bpy)2P]BPh4 derivatives.  相似文献   

15.
Liu X  Guo GC  Wu AQ  Cai LZ  Huang JS 《Inorganic chemistry》2005,44(12):4282-4286
Solvothermal reactions of copper(I) cyanide with tetramethylammonium salts in anhydrous tetrahydrofuran (THF) lead to two novel halogeno(cyano)cuprates, namely, [Me(4)N][Cu(3)(CN)(2)Br(2)] (1) with a 1-D ribbon motif and [Me(4)N](2)[Cu(4)(CN)(5)Cl] (2) with a 3-D nanoporous framework. In 1, four Cu(I) ions are connected via two mu-Br and two mu(3)-Br atoms into a neutral [Cu(4)Br(4)] cluster, and such clusters are further double bridged by [Cu(CN)(2)](2-) linkers to form a 1-D ribbonlike chain. While in 2, Cu(I) ions are connected via mu-CN and mu(3)-CN ligands and mu-Cl atoms into a 2-D fluctuant sheet along the a-c plane, and these sheets are further linked by another kind of mu-CN ligand to form a 3-D nanoporous framework in whose channels reside [Me(4)N](+) cations. Results of optical and luminescent studies indicate that both two complexes are potential materials for semiconductors and long-lived highly luminescent materials.  相似文献   

16.
Polyyn-diyls capped by Ru(2)(ap)(4) termini (ap = 2-anilinopyridinate), that is, [Ru2(ap)4](mu-C,C'-C2m)[Ru2(ap)4] (compounds 1-5 with m = 1-4 and 6), were synthesized through either a metathesis reaction between Ru2(ap)4Cl and LiC(2m)Li or a Glaser homocoupling reaction of Ru2(ap)4(CmH) under Eglinton/Hay conditions. X-ray diffraction studies of compounds 2 and 4 revealed both the linear rigid rod topology of these compounds and the fine structural details about the Ru2 cores and polyyn-diyl chains. Cyclic and differential pulse voltammetric (CV and DPV) measurements and spectroelectrochemical studies show that reduced and oxidized forms of 1, 2, 4, and 5 are donor-acceptor systems in which the Ru2 termini are coupled to varying degrees depending upon the length of the polyyn-diyl bridge.  相似文献   

17.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

18.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

19.
Condensation of cyanometalates and cluster building blocks leads to the formation of hybrid molecular cyanometalate cages. Specifically, the reaction of [Cs subset [CpCo(CN)(3)](4)[CpRu](3)] and [(cymene)(2)Ru(3)S(2)(NCMe)(3)]PF(6) produced [Cs subset [CpCo(CN)(3)](4)[(cymene)(2)Ru(3)S(2)][CpRu](3)](PF(6))(2), Cs subset Co(4)Ru(6)S(2)(2+). Single-crystal X-ray diffraction, NMR spectroscopy, and ESI-MS measurements show that Cs subset Co(4)Ru(6)S(2)(2+ ) consists of a Ru(4)Co(4)(CN)(12) box fused with a Ru(3)S(2) cluster via a common Ru atom. The reaction of PPN[CpCo(CN)(3)] and 0.75 equiv of [(cymene)(2)(MeCN)(3)Ru(3)S(2)](PF(6))(2) in MeCN solution produced [[CpCo(CN)(3)](4)[(cymene)(2)Ru(3)S(2)](3)](PF(6))(2), Co(4)Ru(9)S(6)(2+). Crystallographic analysis, together with NMR and ESI-MS measurements, shows that Co(4)Ru(9)S(6)(2+ ) consists of a Ru(3)Co(4)(CN)(9) "defect box" core, wherein each Ru is fused to a Ru(3)S(2) clusters. The analogous condensation using [CpRh(CN)(3)](-) in place of [CpCo(CN)(3)](-) produced the related cluster-cage Rh(4)Ru(9)S(6)(2+). Electrochemical analyses of both Co(4)Ru(9)S(6)(2+) and Rh(4)Ru(9)S(6)(2+) can be rationalized in the context of reduction at the cluster and the Co(III) subunits, the latter being affected by the presence of alkali metal cations.  相似文献   

20.
Thermolysis of solid [Ru(d(t)bpe)(CO)2Cl2](2, d(t)bpe =(t)Bu2PCH2CH2P(t)Bu2) under vacuum affords the five-coordinate complex [Ru(d(t)bpe)(CO)Cl2] (4), which was shown by X-ray crystallography to contain a weak remote agostic interaction. In solution, 4 can be readily trapped by CO, CH3CN or water to give [Ru(d(t)bpe)(CO)(L)Cl2](L = CO, 2; L = CH3CN, 6; L = H2O, 7). Reaction of 4 with AgOTf/H2O yields the tris-aqua complex [Ru(d(t)bpe)(CO)(H2O)3](OTf)2 (8), which has been structurally characterised and probed in solution by pulsed-gradient spin echo (PGSE) NMR spectroscopy. The water ligands in 8 are labile and easily substituted to give [Ru(d(t)bpe)(CO)(NCCH3)3](OTf)2 (10) and [Ru(d(t)bpe)(CO)(DMSO)3](OTf)2 (11). In the presence of CO, the tris-aqua complex undergoes water-gas shift chemistry with formation of the cationic hydride species [Ru(d(t)bpe)(CO)3H](OTf) (12) and CO2. X-Ray crystal structures of complexes 2, 4, 6, 8 and 11-12 are reported along with those for [{Ru(d(t)bpe)(CO)}2(mu-Cl)2(mu-OTf)](OTf) (3), [{Ru(d(t)bpe)(CO)}2(mu-Cl)3][Ru(d(t)bpe)(CO)Cl3](5) and [Ru(d(t)bpe)(CO)(H2O)2(OTf)](OTf)(9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号