首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.  相似文献   

2.
Nanotechnology has generated tremendous hopes in recent years toward the design of advanced functional materials, especially in the bio-medical field. Nano-sized-materials such as magnetite nanoparticles display indeed fascinating physico-chemical properties that, if tuned properly, can be exploited to design new bio-diagnostic and therapeutic strategies as well as innovative biotechnology methodologies. Owing to their biocompatibility and excellent magnetic properties, magnetite nanocrystals have been the object of a tremendous amount of research in the last decade and numerous (bio)applications have been reported. Importantly, advances in the synthesis of magnetite nanoparticles enable excellent control over their size, shape, and composition. Despite these remarkable progresses, many issues remain to be overcome for these nanotechnology products to revolution the medical practice. The fine control and application of colloidal nanostructures such as magnetite nanoparticles in complex biological systems remains especially challenging. This article attempts to review the current status of magnetite nanoparticles preparation and use, with a special emphasis on bio-medical applications, but also to outline the promises and challenges associated to this emerging technology.  相似文献   

3.
Fe-doped Au nanoparticles are ideal for biological applications over magnetic oxides due to their conjugation chemistry, optical properties, and surface chemistry. We present an AC magnetic field heating study of 8 nm Fe-doped Au nanoparticles which exhibit magnetic behavior. Magnetic heating experiments were performed on stable aqueous solutions of the nanoparticles at room temperature. The nanoparticles exhibit magnetic field heating, with a specific absorption rate (SAR) of 1.84 W/g at 40 MHz and H=100 A/m. The frequency dependence of the heating follows general trends predicted by power loss equations and is similar to traditional materials.  相似文献   

4.
Towards the challenge for synthesis of smaller‐sized heterostructures and hybrid composites for nanomagnets and magnetic fluid applications. Here, a novel method is reported to reduce the particle size of Cobalt–Nickel (CoNi) magnetic nanoparticles by placing them between a static, repulsive magnetic field (N–N/S–S) during synthesis in contrast to the conventional method of applying an attractive (N–S) magnetic field. The obtained smaller sized‐CoNi nanoparticles (≈40 nm) possess a uniform size, an excellent monodispersity, and outstanding magnetic properties. The results clearly demonstrate that the size and morphology change of CoNi nanoparticles have great influence on their magnetic properties. This study provides a footprint to design new heterostructured magnetic nanomaterials under the same‐poled magnetic field for potential applications in magnetic fluids, spintronics, and other related industries.  相似文献   

5.
The unique properties of plasmonic nanostructures have fuelled research based on the tremendous amount of potential applications. Their tailor‐made assemblies in combination with the tunable size and morphology of the initial building blocks allow for the creation of materials with a desired optical response. In this respect, it is crucial to synthesize nanoparticles with a defined shape that are at the core of such developments. Moreover, the interaction of individual nanoparticles with an incident electromagnetic field cannot only be influenced by their structure, but in fact, also by their spatial arrangement to each other. To harvest such opportunities, a profound theoretical understanding of these interactions is required as well as concise strategies to create such ordered assemblies. A quantitative evaluation of their optical properties can only be conducted when discrete structures of high uniformity can be achieved. As a consequence, separation steps have to be applied in order to obtain materials of high purity and uniformity. This also allows for an easier structural characterization of the nanoparticles and their assembled superstructures. In this progress report, an overview about the current development in this field of research is provided.  相似文献   

6.
Thermoswitchable magnetic hydrogels are being extensively investigated because of their great potential for medical applications. Indeed, they can behave as smart carriers able to transport drugs to a chosen part of the body and release them via magneto-thermal activation by an external alternating magnetic field. We report on the magnetization of the thermosensitive poly(N-isopropylacrylamide) hydrogel through the adsorption of controlled amounts of magnetite nanoparticles. We show that the temperature at which the hydrogel contraction occurs (i.e. the lower critical solution temperature) can be controlled from 32 °C to 52 °C by varying the concentration of adsorbed nanoparticles. This is clearly shown by photon correlation spectroscopy. The results are an advance in the use of the magnetized poly(N-isopropylacrylamide) hydrogel as a flexible and adjustable nanomaterial and are of great interest in numerous applications which require drug release on demand.  相似文献   

7.
Magnetic particles play nowadays an important role in different technological areas with potential applications in fields such as electronics, energy and biomedicine. In this report we will focus on the hyperthermia properties of magnetite nanoparticles and the effect of several chemical/physical parameters on their heating properties. We will discuss about the need of searching new smaller magnetic systems in order to fulfill the required physical properties which allow treating tumoral tissues more efficiently by means of magnetically induced heat. Preliminary results will be shown about the effect of a biocompatible shell of core–shell magnetite NPs on the heating properties by application of a RF magnetic field.  相似文献   

8.
Magnetic nanoparticles have been investigated for biomedical applications for more than 30 years. The development of biocompatible nanosized drug delivery systems for specific targeting of therapeutics is imminent in medical research, especially for treating cancer and vascular diseases. We used drug-labeled magnetic iron oxide nanoparticles, which were attracted to an experimental tumor in rabbits with an external magnetic field (magnetic drug targeting, MDT). Aim of this study was to detect and quantify the biodistribution of the magnetic nanoparticles by magnetorelaxometry. The study shows higher amount of nanoparticles in the tumor after intraarterial application and MDT compared to intravenous administration.  相似文献   

9.
Elliptical and stadium-shaped nanoparticles as a function of their geometry have been investigated using numerical simulations. The effect of the shape anisotropy of the particles on coercivity and remanence together with the angular dependence of the remanence and coercivity are addressed. Our results demonstrate that the stadium-shaped particles have many of the outstanding properties of elliptical particles, but also have unique properties, such that the coercivity and remanence remain stable for a wide range of geometry parameters, and exhibit a peculiar angular dependence in the coercivity. These properties suggest that they can be useful for applications in the area of magnetic recording systems.  相似文献   

10.
Janus particles, particles that have two distinct aspects on their surface or interiors, have attracted much attention due to their potential for application. For the application of Janus particles to high‐resolution displays, and as light sources for optical circuits and fluorescent probes, the Janus particles should be nanosize to ensure high‐resolution display and analysis, responsive to external stimuli, and highly fluorescent. However, it is still a challenging issue to develop such highly fluorescent nanoscale Janus particles and control their alignment. Magnetoresponsive Janus particles, of which the orientation can be controlled by an external magnetic field, are prepared by the simple introduction of polymer‐coated magnetic nanoparticles (NPs) into the hemispheres of Janus particles. If these magnetoresponsive Janus particles can be combined with a strong fluorescence system, then they could be ideal candidates as components of the previously mentioned applications. In the present study, Janus particles are prepared with a fluorescent dye and gold nanoparticles (Au NPs) on one side. The optical properties of the resulting particles are assessed and discussed. Furthermore, the response of composite Janus particles containing dyes, Au NPs, and iron oxide NPs to an external magnetic field is discussed.  相似文献   

11.
Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material that is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe2O3) nanoparticles 7-10 nm in diameter. The material is homogenous at very small length scales (<100 nm) and can be crosslinked to form a flexible magnetic material, which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 to 50 wt% without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings.  相似文献   

12.
Mixing in aqueous solutions polyelectrolyte-neutral block copolymers with oppositely charged species, spontaneously forms stable core-shell complexes, which are electrostatically driven. We report here on the structural and orientational properties of such mixed magnetic nanoclusters made of magnetic iron oxide nanoparticles (MNPs) and polyelectrolyte-neutral block copolymers. Small angle neutron scattering and transmission electron microscopy experiments allows to probe the inner-core nanoparticle organization, leading to an average interparticle distance and confirming the hierarchical internal structure of the clusters. Thanks to the MNP optical anisotropy, we also probe the under-magnetic field orientational properties of the core-shell clusters and their dynamical rotational relaxation.  相似文献   

13.
We analyze the properties of asymmetric three-layer (FSF and FFS) heterostructures consisting of a ferromagnet (F) and a superconductor (S) in an external magnetic field. The asymmetry of FS systems can be due to the difference in the parameters characterizing the F layers (in particular, noncollinearity of the magnetizations of the ferromagnets, leading to the generation of the long-range triplet component of the superconducting condensate). We consider the case of strong scattering of conduction electrons from non-magnetic impurities (the so-called dirty limit), for which we derive the equations for the pair amplitude and corresponding boundary conditions to these equations, which are valid in the presence of an external magnetic field. We discuss possible applications of these FS heterostructures as spin switches on the basis of analysis of their phase diagrams, and we give recommendations for determining the optimal parameters required for their stable operation. The occurrence of peculiar re-entrant superconductivity in the FFS systems on an increase of the external magnetic field is predicted.  相似文献   

14.
Simultaneous scattering invisibility and free‐space field enhancement have been achieved based on multipolar interferences among all‐dielectric nanoparticles. The scattering properties of all‐dielectric nanowire quadrumers are investigated and two sorts of scattering invisibilities have been identified: the trivial invisibility where the individual nanowires are not effectively excited; and the nontrivial invisibility with strong multipolar excitations within each nanowire, which results in free‐space field enhancement outside the particles. It is revealed that such nontrivial invisibility originates from not only the simultaneous excitations of both electric and magnetic resonances, but also their significant magnetoelectric cross‐interactions. We further show that the invisibility obtained is both polarization and direction selective, which can probably play a significant role in various applications including non‐invasive detection, sensing, and non‐disturbing medical diagnosis with high sensitivity and precision.  相似文献   

15.
Magnetic nanoparticles have been prepared by various soft chemical methods including self-assembly. The bare or surface-modified particles find applications in areas such as hyperthermia treatment of cancer and magnetic field-assisted radioactive chemical separation. We present here some of the salient features of processing of nanostructured magnetic materials of different sizes and shapes, their properties and some possible applications. The materials studied included metals, metal-ceramic composites, and ferrites.  相似文献   

16.
As a new type of functional material, magnetic fluid (MF) is a stable colloid of magnetic nanoparticles, dressed with surfactant and dispersed in the carrier liquid uniformly. The MF has many unique optical properties, and the most important one is its tunable refractive index property. This paper summarizes the properties of the MF refractive index and the related optical devices. The refractive index can be easily controlled by external magnetic field, temperature, and so on. But the tunable refractive index of MF has a relaxation effect. As a result, the response time is more than milliseconds and the MF is only suitable for low speed environment. Compared with the traditional optical devices, the magnetic fluid based optical devices have the tuning ability. Compared with the tunable optical devices (the electro-optic devices (LiNbO3) of more than 10 GHz modulation speed, acoustic-optic devices (Ge) of more than 20 MHz modulation speed), the speed of the magnetic fluid based optical devices is low. Now there are many applications of magnetic fluid based on the refractive index in the field of optical information communication and sensing technology, such as tunable beam splitter, optical-fiber modulator, tunable optical gratings, tunable optical filter, optical logic device, tunable interferometer, and electromagnetic sensor. With the development of the research and application of magnetic fluid,a new method, structure and material to improve the response time can be found, which will play an important role in the fields of optical information communication and sensing technology.  相似文献   

17.
The physical and magnetic properties of magnetic nanoparticles are crucial for their effectiveness and reliability in biomedical applications. In this article, we report the synthesis of a stable Ho-substituted Mn–Zn ferrite ferrofluid and its physical and magnetic properties. Substitution by rare earth metal plays an important role in determining the magneto-crystalline anisotropy in 4f-3d inter-metallic compounds. Ho3+ substitution not only enhanced the magnetic anisotropy but also produced strong spin frustration at low temperature. The field dependence of blocking temperature shows H2/3 dependency in the entire range of field, i.e., 10–700 Oe, indicating the emergence of Ising spins characteristics in the present system.  相似文献   

18.
In this paper, a very simple and facile approach for the large scale synthesis of uniform and size-controllable single-domain magnetite nanoparticles is reported. These magnetite nanoparticles were synthesized via thermal decomposition of a ferric nitrate/ethylene glycol solution. The structural and morphological properties of the synthesized nanoparticles were carefully studied. Nearly spherical nanoparticles with inverted spinel structure and average particle and crystallite sizes smaller than 20 nm were obtained. The magnetic measurements revealed that magnetite nanoparticles have a magnetic saturation value near that of the bulk magnetite. The erythrocyte cytotoxicity assays showed no hemolytic potential of the samples containing magnetite nanoparticles, indicating no cytotoxic activity on human erythrocytes, which makes these interesting for biotechnological applications.  相似文献   

19.
A great deal of attention has been paid to the use of magnetite nanoparticles as heating elements in the research of magnetic fluid hyperthermia. However, these particles have a relatively low magnetization and as a result, have low heating efficiency as well as difficulties in detection applications. To maximize heating efficiency we propose and show the use of high-moment Fe(Co)-Au core-shell nanoparticles. Using a physical vapor nanoparticle-deposition technique the high-moment nanoparticles were synthesized. The water-soluble particles were placed in an AC magnetic field of variable magnetic field frequencies. The temperature rise was measured and compared to theory.  相似文献   

20.
This mini-review summarizes the recent advances in chemical synthesis and assembly of monodisperse magnetic nanoparticles for magnetic applications. After a brief introduction to nanomagnetism, the review focuses on recent developments in solution phase syntheses and assemblies of monodisperse Fe, CoFe, FePt and SmCo5 nanoparticles. The review further outlines the structural and magnetic properties of these nanoparticles for magnetic information and energy storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号