首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arancibia V  López A  Zúñiga MC  Segura R 《Talanta》2006,68(5):1567-1573
The separation of arsenic based on in situ chelation with ammonium diethyl dithiophosphate (ADDTP) has been carried out using methanol-modified supercritical CO2. Aliquots of extract were added to an electroanalytical cell and arsenic was determined by square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). Quantitative extractions of As(DDTP)3 were achieved when the experiments were carried out at a pressure of 2500 psi, a temperature of 90 °C, 2.0 mL of methanol, 20.0 min of static extraction and 5.0 min of dynamic extraction in the presence of 18 mg of ADDTP. Analysis of arsenic was made using 150 mg L−1 of Cu(II) in 1 M HCl solution as supporting electrolyte in the presence of ADDTP as ligand. Preconcentration was carried out by deposition at a potential of −0.50 V and the intermetallic compound CuxAsy was reduced at a potential of −0.77 to −0.82 V, depending on ligand concentration. The results showed that the presence of ligand plays an important role, increasing the method's sensitivity and preventing the oxidation of As(III). The calibration graph of the As(DDTP)3 solution was linear from 0.8 to 12.5 μg L−1 of arsenic (LOD 0.5 μg L−1, R = 0.9992, tacc = 60 s). The method was validated using carrot pulp spiked with arsenic solution. This method was applied to the determination of arsenic in samples of carrots, beets and irrigation water. Arsenic in beets was: skin 4.10 ± 0.18 mg kg−1; pulp 3.83 ± 0.19 mg kg−1 and juice 0.71 ± 0.09 mg L−1; arsenic in carrots was: skin 2.15 ± 0.09 mg kg−1; pulp 0.59 ± 0.11 mg kg−1 and juice 0.71 ± 0.03 mg L−1. Arsenic in water were: Chiu-Chiu 0.08 mg L−1, Inacaliri 1.12 mg L−1, and Salado river 0.17 ± 0.07 mg L−1.  相似文献   

2.
Maya F  Estela JM  Cerdà V 《Talanta》2008,74(5):1534-1538
A multisyringe flow injection system (MSFIA) with spectrophotometric detection is proposed as a fast, robust and low-reagent consumption system for the determination of chloride (Cl) in waters. The system is based in the classic reaction of Cl with Fe3+ and Hg(SCN)2, but due to the hazardous properties of this last reagent, the proposed methodology has been developed with the aim to minimize the consumption of this one, consuming less than 0.05 mg of Hg for a Cl determination, being the system of this type with the lowest Hg consumption. The linear working range was between 1 and 40 mg L−1 Cl and the detection limit was 0.2 mg L−1 Cl. The repeatability (RSD) was 0.8% for a 10 mg L−1 Cl solution, and the injection throughput was 130 h−1. The proposed system is compared with other chloride monitoring flow systems, this comparison is realized with a point of view of the equilibrium between the obtained analytical features and produced residues toxicity. The proposed system was applied to the determination of Cl in mineral, tap and well water.  相似文献   

3.
Hydrogen peroxide in basic media is proposed as a means for dissolving whole blood samples to be analyzed by electrothermal atomization atomic absorption spectrometry, ET AAS. Approximately 2 g of the whole blood sample were directly weighed in a 150 mL volumetric flask; 3 mL of a NaOH 0.2 mol L−1 solution, two drops of 1-octanol, as an antifoaming agent, and 1 mL of 30% volume hydrogen peroxide were added to the flask to promote oxidation. The solution was then manually shaken and after approximately three minutes of shaking, a clear solution, with no apparent suspended solids or greasy layers, was obtained. Distilled-deionized water was used to complete the volume. Ten μL of the resulting solution along with 10 μL of a solution containing 5000 mg L−1 of NH4H2PO4 and 300 mg L−1 of Mg(NO3)2 as a modifier, were injected into transversely heated graphite tubes for lead determination. Both aqueous standards and standard addition calibration curves produced results not significantly different at a 95% confidence limit level. Accuracy of the measurements was assessed by analysis of the IAEA A-13 (concentration of trace and minor elements in freeze dried animal blood) standard reference material containing 0.18 mg L−1 lead on a dry basis and by means of recovery tests. Analysis of the IAEA A-13 standard produced 0.17 ± 0.02 mg L−1 lead on a dry basis; recovery tests afforded values from 95 to 105%. Ten consecutive measurements of a 5 ppb lead solution gave a characteristic mass of 47.2 pg and a (3S) detection limit of 1.77 μg L−1 Pb. Results obtained from analysis of whole blood samples of volunteer donors covered a lead concentration range between 8 and 21 μg L−1 with a mean value of 11.9 ± 4.7 μg L−1.  相似文献   

4.
Xiaohong Li  Yingying Su  Kailai Xu  Xiandeng Hou  Yi Lv   《Talanta》2007,72(5):1728-1732
A simple, sensitive and interference-free method was proposed for the determination of arsenic, based on the generation of volatile arsenic trichloride coupled with atomic fluorescence spectrometry. Thiourea, together with l-ascorbic acid, was used to reduce As(V) to As(III), and the chloride generation was based on the reaction between As(III) and hydrochloric acid. Under the optimized experimental conditions, the present procedure allows for the quantification of arsenic in the concentration range of 0.01–4.0 mg L−1, with a limit of detection (3σ) of 6.0 μg L−1. The relative standard deviation (R.S.D.) is 4.0% for 0.1 mg L−1 arsenic (n = 7). Finally, the proposed method was successfully applied to the determination of arsenic in several certified reference samples (stainless steel, alloy steel, copper alloy and water sample) and real samples (brass material and spiked cobalt material), with analytical results well-agreed with those by ICP-MS.  相似文献   

5.
An improved flow-based procedure is proposed for turbidimetric sulphate determination in waters. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. Stable baselines were observed in view of the pulsed flow characteristic of the systems designed with solenoid micro-pumps, thus making the use of washing solutions unnecessary. The nucleation process was improved by stopping the flow prior to the measurement, thus avoiding the need of sulphate addition. When a 1-cm optical path flow cell was employed, linear response was achieved within 20–200 mg L−1, described by the equation S = −0.0767 + 0.00438C (mg L−1), r = 0.999. The detection limit was estimated as 3 mg L−1 at the 99.7% confidence level and the coefficient of variation was 2.4% (n = 20). The sampling rate was estimated as 33 determinations per hour. A long pathlength (100-cm) flow cell based on a liquid core waveguide was exploited to increase sensitivity in turbidimetry. Baseline drifts were avoided by a periodical washing step with EDTA in alkaline medium. Linear response was observed within 7–16 mg L−1, described by the equation S = −0.865 + 0.132C (mg L−1), r = 0.999. The detection limit was estimated as 150 μg L−1 at the 99.7% confidence level and the coefficient of variation was 3.0% (n = 20). The sampling rate was estimated as 25 determinations per hour. The results obtained for freshwater and rain water samples were in agreement with those achieved by batch turbidimetry at the 95% confidence level.  相似文献   

6.
It has been developed an automatic stop-flow procedure for sequential photometric determination of anionic and cationic surfactants in a same sample of water. The flow system was based on multicommutation process that was designed employing two solenoid micro-pumps and six solenoid pinch valves, which under microcomputer control carry out fluid propelling and reagent solutions handling. A homemade photometer using a photodiode as detector and two light emitting diodes (LEDs) with emission at 470 nm (blue) and 650 nm (red) as radiation sources, which was tailored to allow the determination of anionic and cationic surfactants in waters. The procedure for anionic surfactant determination was based on the substitution reaction of methyl orange (MO) by the anionic surfactant sodium dodecylbenzene sulfonate (DBS) to form an ion-pair with the cetyl pyridine chloride (CPC). Features such as a linear response ranging from 0.35 to 10.5 mg L−1 DBS (R = 0.999), a detection limit of 0.06 mg L−1 DBS and a relative standard deviation of 0.6% (n = 11) were achieved. For cationic surfactant determination, the procedure was based on the ternary complex formation between cationic surfactant, Fe(III) and chromazurol S (CAS) using CPC as reference standard solution. A linear response range between 0.34 and 10.2 mg L−1 CPC (R = 0.999), a detection limit of 0.05 mg L−1 CPC and a relative standard deviation of 0.5% (n = 11) were obtained. In both cases, the sampling throughput was 60 determinations per hour. Reagents consumption of 7.8 μg MO, 8.2 μg CPC, 37.2 μg CAS and 21.6 μg Fe(III) per determination were achieved. Analyzing river water samples and applying t-test between the results found and those obtained using reference procedures for both surfactant types provide no significant differences at 95% confidence level.  相似文献   

7.
A flow injection analysis (FIA) method was developed for the determination of pyruvate in onion cultivars (Allium cepa L.) from the West-Center region of Venezuela. The reference Schwimmer and Weston (1961) (J. Agric. Food Chem. 9 (1961) 301) Batch method was modified and adapted to FIA conditions. The formation kinetic of the 2,4-dinitrophenylhydrazine (DNPH)–pyruvate complex was evaluated at room temperature and at 37 °C. It was demonstrated the suitability of the chromopher formation at room temperature. The optimal values for the FIA parameters were: sample injection volume 3 mL, flow rate 6 mL min−1, reactor length 1.5 m, sodium hydroxide concentration 1.0 mol L−1 and hydrochloric acid concentration 0.5 mol L−1. The working calibration range was extended from 80 mg L−1 (Batch method) to 700 mg L−1 with the FIA set up. The sample dilution step is thus avoided, simplifying the whole analysis process. The pungency in representative samples of the cultivars Yellow granex 438, Ultra Hybrid and Red onion “Sangre de Toro” was evaluated by the flow injection analysis (FIA)–pyruvate method and the results were compared to the reference Batch pyruvate method and to the taste panel test. Non-significant differences were found at the 95% of confidence level between the FIA method and the Batch reference method. Correlation coefficient when comparing the FIA results to the taste panel test was r2 = 0.8353. Significant differences (P < 0.05) were found in the pungency of the cultivars, the Ultra Hybrid having the highest pungency. The pungency order from minor to major was: Red onion, Texas Grano 438 and Ultra Hybrid.  相似文献   

8.
Niaz A  Sirajuddin  Shah A  Bhanger MI  Saeed M  Jamali MK  Arain MB 《Talanta》2008,74(5):1608-1614
A new simple sensitive differential pulse polarographic (DPP) method was investigated for the determination of acrylamide (AA) directly in a neutral aqueous solution. The AA showed a well-defined and well-resolved peak in pure aqueous LiCl at −1.84 V in the potential range from −1.6 V to −1.97 V at nitrogen pressure of 0.5 kg cm−2. Among the various electrolytes studied, the AA showed good DPP response in the presence of LiCl and tetra methyl ammonium iodide, while it showed poor response in the presence of tetra butyl ammonium hydroxide and tetra butyl ammonium bromide due to their strong adsorption on the surface of electrode which hindered its reduction. The effect of LiCl concentration, the cyclic voltammetric response and the drop time study showed that AA exhibited an irreversible adsorptive electrochemical behavior. The good electrochemical response in pure aqueous medium suggested that hydrogen bonding might be involved which may favor the electrode reaction. Under optimized conditions, the peak current was linear in the entire concentration range from 0.2 mg L−1 to 20 mg L−1 with the correlation coefficient of R2 = 0.9998. The method showed good reproducible results with R.S.D. of 0.3% (n = 16). The detection limit (LOD) was 27 μg L−1. The influence of various interfering agents was also studied. The method was applied successfully for the quantification of AA in water samples without any interference effect from alkali metals.  相似文献   

9.
The first application of the flow analysis coupled with chemiluminescence detection and based on stopped-flow chemistry to the simultaneous determination of two components, using a two equation system, is described. The proposed method to determine simultaneously morphine and naloxone is based on the chemiluminescence oxidation of these compounds by their reaction with potassium permanganate in an acidic medium. The main feature of the system used is that the recording of the whole chemiluminescence intensity-versus-time profiles can be obtained, using the stopped-flow technique in a continuous-flow system. Then, the chemiluminescent signals obtained at two times of these profiles can be used to determine the concentration of both opiate narcotics. The effect of common emission enhancers on the chemiluminescence emission of these compounds in different acidic media, using the above-mentioned technique, was studied, in order to achieve the best conditions in which, the CL profiles of both compounds should be additive. The parameters selected were sulphuric acid 1.0 mol L−1, permanganate 0.2 mmol L−1 and formaldehyde 0.8 mol L−1. Taken in account the different profiles of the transient CL signal obtained with each compounds, using the selected chemical conditions, two measurement times (1.4 and 4.8 s) of these responses curves were considered with the purpose to establish a simple 2 × 2 matrix calculation. Using the chemiluminiscent signals obtained at these times, a linear calibration graph was obtained for each one of the compounds between 0.01 and 1.00 mg L−1 for morphine and 0.10–1.50 mg L−1 for naloxone. The present chemiluminescence procedure was applied to the determination of both compounds in mixtures and was found to be satisfactory.  相似文献   

10.
In this work an automatic photometric procedure for the determination of chlorine in bleach samples employing N,N′-diethyl-p-phenylenediamine (DPD) as chromogenic reagent is described. The procedure was based on a falling drop system where the analyte (Cl2) was collected by a DPD solution drop (50 μL) after its delivery from the sample bulk that was previously acidified. The flow system was designed based on the multicommutation process assembling a set of three-way solenoid valves, which under microcomputer control afforded facilities to handle sample and reagent solution in order to control analyte delivering and solution drop generation. The analyte volatilization was improved by coupling online a little heating device. The detection system comprised a green LED (515 nm) and a phototransistor. Aiming to prove the usefulness of the proposed procedure a set of bleach samples was analyzed. Comparing the results with those obtained with reference method no significant difference at 95% confidence level was observed. Other profitable features such as a linear response ranging from 15 up to 100 mg L−1 Cl2 (R = 0.999); a detection limit of 4.5 mg L−1 Cl2 estimated based on the 3σ criterion; a relative standard deviation of 2.5% (n = 10) using a typical bleach sample containing 25.0 mg L−1 Cl2; a consumption of 55 μg of DPD per determination; and a analytical frequency of 20 determinations per hour were also achieved.  相似文献   

11.
Yao J  Xu H  Lv L  Song D  Cui Y  Zhang T  Feng YQ 《Analytica chimica acta》2008,616(1):42-48
A novel liquid-phase microextraction (LPME) method was presented in this paper. The most attractive feature of this method is using a polychloroprene rubber tube (PCR tube) instead of a microsyringe to load organic solvent. The PCR tube and sample vial were horizontally placed so that the selection of organic solvent was not affected by the density of extractant. Therefore, the stability of organic solvent increased and the available organic solvent was extended greatly. In this work, three phthalate esters (PAEs) (dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP)) were chosen as model analytes to testify the feasibility of the new method. A series of extraction parameters have been investigated systematically. Under the optimized condition, the method showed linear response over four orders of magnitude, ranged from 0.005 mg L−1 to 50 mg L−1. The correlation coefficients (r) were better than 0.997 and the limits of detection (LOD) were 0.0012 mg L−1 for DMP, 0.0014 mg L−1 for DEP and 0.0022 mg L−1 for DnBP. Good reproducibility of extraction was acquired, the inter-day and intra-day relative standard deviation (R.S.D.) were below 7.9% and 7.4%, respectively. Recoveries that ranged from 82.7% to 116.9% were gained when the new method was used to determine three phthalate esters in landfill leachates. The enrichment factors were 5–26 for the three PAEs. The novel LPME is promising to be an alternative sample preparation method for extracting target analytes in complex sample matrices because of the simplicity, low cost and short sample preparation time.  相似文献   

12.
The paper presents a rapid method for the determination of dioxopromethazine hydrochloride (DPZ), an antihistamine drug, by the capillary electrophoresis with electrochemiluminescene detection (CE–ECL) using tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) reagent. This CE–ECL detection method has high sensitivity, good selectivity and reproducibility for DPZ analysis. Under the optimized conditions: separation capillary, 38 cm length (25 μm i.d.); sample injection, 10 s at 8 kV; separation voltage, 12.5 kV; running buffer, 20 mmol L−1 sodium phosphate of pH 6.0; detection potential, 1.15 V; 50 mmol L−1 of phosphate buffer (pH 7.14) containing 5 mmol L−1 of Ru(bpy)32+ in ECL detection cell, the detection limit of DPZ was 0.05 μmol L−1 (S/N = 3). The linear range extended from 5 to 100 μmol L−1. The linear curve obtained was Y = 181.62 + 9.28X with a correlation coefficient of 0.9970. The relative standard deviations of the ECL intensity and the migration time for six continuous injections of 5 μmol L−1 DPZ were 3.7% and 0.92%, respectively. The CE–ECL method was applied to analyze DPZ in real samples including tablets, rat serum and human urine, and satisfactory results were obtained without interference from samples matrix. The CE–ECL technique was proved to be a potential method for the detection of DPZ in clinic analysis.  相似文献   

13.
An ionic liquid-type carbon paste electrode (IL-CPE) had been fabricated by replacing non-conductive organic binders with a conductive room temperature ionic liquid, 1-pentyl-3-methylimidazolium hexafluorophosphate (PMIMPF6). The electrochemical responses of calcium dobesilate were investigated at the IL-CPE and the traditional carbon paste electrode (T-CPE) in 0.05 mol L−1 H2SO4, respectively. The results showed the superiority of IL-CPE to T-CPE in terms of provision of higher sensitivity, faster electron transfer and better reversibility. A novel method for determination of calcium dobesilate was proposed. The oxidation peak current was rectilinear with calcium dobesilate concentration in the range of 8.0 × 10−7 to 1.0 × 10−4 mol L−1, with a detection limit of 4.0 × 10−7 mol L−1(S/N = 3) by differential pulse voltammetry. The proposed method was applied to directly determine calcium dobesilate in capsule and urine samples.  相似文献   

14.
Li YS  Ju X  Gao XF  Zhao YY  Wu YF 《Analytica chimica acta》2008,610(2):249-256
A new method for the determination of lactic acid based on the immobilization enzyme fluorescence capillary analysis (IE-FCA) was proposed. Lactic dehydrogenase (LDH) was immobilized on inner surface of a capillary with glutaraldehyde, and an immobilized enzyme lactate capillary bioreactor (IE-LCBR) was formed for the determination of lactic acid. After nicotinamide adenine dinucleotide (NAD+) is mixed with lactic acid solution, it was sucked into the IE-LCBR and was detected at λex 353 nm/λem 466 nm. Optimized conditions are as follows: the temperature is 38 °C; the reaction time is 15 min; the concentrations of Tris buffer (pH 8.8) and NAD+ are 0.1 mol L−1 and 4 mmol L−1, respectively; the concentration of LDH used for immobilization is 15 kU L−1. The concentration of lactic acid is directly proportional to the fluorescence intensity measured from 0.50 to 2.0 mmol L−1; and the analytical recovery of added lactic acid was 99–105%. The minimum detection limit of the method is 0.40 mmol L−1 and sensitivity of the IE-CBR is 4.6 F mmol−1 L−1 lactate. Its relative standard deviation (R.S.D.) is ≤2.0%. This IE-FCA method was employed for determination of lactate in milk drink.  相似文献   

15.
Cui X  Fang G  Jiang L  Wang S 《Analytica chimica acta》2007,590(2):2139-259
A simple and sensitive kinetic-spectrophotometric method was developed for the determination of ultra trace amount of formaldehyde in food samples. The method was based on the oxidation of rhodamine B (RhB) by potassium bromate in sulfuric acid medium (formaldehyde as catalyst). The reaction was monitored by measuring the decrease in absorbance of the dye at 515 nm after 6 min. The developed method allowed the determination of formaldehyde in the range of 10–100 μg L−1 with good precision, accuracy and the detection limit was down to 2.90 μg L−1. The relative standard deviations for the determination of 10 and 60 μg L−1 of formaldehyde were 3.0% and 1.9% (n = 10), respectively. The method was found to be sensitive, selective and was applied to the determination of formaldehyde in foods with satisfactory results.  相似文献   

16.
A sensitive and rapid electrochemical method was developed for the determination of telmisartan based on the enhancement effect of sodium dodecyl benzene sulfonate (SDBS). In 0.1 mol L−1 HClO4 and in the presence of 7.5 × 10−5 mol L−1 SDBS, a well-defined and sensitive oxidation peak was observed for telmisartan at the acetylene black (AB) paste electrode. However, the oxidation peak is poor-shaped and the peak current is very low in the absence of SDBS, suggesting that SDBS shows obvious enhancement effect for the determination of telmisartan. After all the experimental parameters were optimized, a sensitive and simple electrochemical method was developed for determining telmisartan. The oxidation peak current is proportional to the concentration of telmisartan over the range from 2.5 × 10−7 to 2.0 × 10−5 mol L−1. The detection limit is 7.5 × 10−8 mol L−1 after 2 min of accumulation. This new voltammetric method was successfully used to detect telmisartan in drugs.  相似文献   

17.
The proposed flow system was developed in order to minimize the drawbacks related to the PGEs determination by quadrupole-inductively coupled plasma-mass spectrometry (Q-ICP-MS). It was intended not only to lower the limits of detection (LODs) but also to eliminate the interferences originating from some atomic and molecular ions produced in the argon plasma. This was accomplished by means of an on-line sample clean-up/pre-concentration step, using a chelating resin (Metalfix™ Chelamine™) in which Rh, Pd and Pt were preferably retained when compared with the interfering species.

The results obtained by using the developed flow system in the analysis of urine samples are presented. With a sampling rate of 9 samples h−1 (i.e., 27 determinations) and a sample consumption of ca. 10 mL, the developed flow system allowed linear calibration plots up to 100 ng L−1 with detection limits of 1.2 ng L−1 (Rh), 0.4 ng L−1 (Pd) and 0.9 ng L−1 (Pt). Repeatability studies showed good precision (R.S.D.%, n = 5): 3.7% (Rh); 2.6% (Pd) and 2.4% (Pt), for 10 ng L−1; 2.4% (Rh); 1.4% (Pd) and 1.9% (Pt), for 50 ng L−1; and 1.3% (Rh); 0.58% (Pd) and 0.62% (Pt), for 100 ng L−1. By spiking human urine samples, recovery tests were performed, and the values obtained ranged between 89% and 105% (Rh); 90% and 104% (Pd); and 93% and 105% (Pt).  相似文献   


18.
A new, highly sensitive and simple kinetic method for the determination of thyroxine was proposed. The method was based on the catalytic effect of thyroxine on the oxidation of As(III) by Mn(III) metaphosphate. The kinetics of the reaction was studied in the presence of orthophosphoric acid. The reaction rate was followed spectrophotometrically at 516 nm. It was established that orthophosphoric acid increased the reaction rate and that the extent of the non-catalytic reaction was extremely small. A kinetic equation was postulated and the apparent rate constant was calculated. The dependence of the reaction rate on temperature was investigated and the energy of activation and other kinetic parameters were determined.

Thyroxine was determined under the optimal experimental conditions in the range 7.0 × 10−9 to 3.0 × 10−8 mol L−1 with a relative standard deviation up to 6.7% and a detection limit of 2.7 × 10−9 mol L−1. In the presence of 0.08 mol L−1 chloride, the detection limit decreased to 6.6 × 10−10 mol L−1. The proposed method was applied for the determination of thyroxine in tablets. The accuracy of the method was evaluated by comparison with the HPLC method.  相似文献   


19.
The development and optimization of on-line microdistillation for free and total sulfite (S(IV)) in grape juice and wine is reported. The microstill used both heat and an air stream to separate sulfur dioxide from the wine samples; the distillation product was captured in a peroxide solution, and converted to sulfuric acid, mirroring accepted industry practice. Measured from 1 to 300 mg L−1 as SO2 by conductance, sample throughputs of 60 h−1 for free and 20 h−1 for total sulfite were achieved. Data for bound S(IV) emphasises the slow kinetics of release reactions in some wines. The microstill method is more efficient for total sulfite than the accepted manual technique. Good correlation was found between the microstill and manual methods under specified control conditions.  相似文献   

20.
Yu F  Li L  Chen F 《Analytica chimica acta》2008,610(2):257-262
A new spectrofluorimetric method is developed for determination of adenosine disodium triphosphate (ATP). The interactions between prulifloxacin (PUFX)–Tb3+ complex and adenosine disodium triphosphate has been studied by using UV–vis absorption and fluorescence spectra. Using prulifloxacin–Tb3+ as a fluorescence probe, under the optimum conditions, ATP can remarkably enhance the fluorescence intensity of the prulifloxacin–Tb3+ complex at λ = 545 nm and the enhanced fluorescence intensity is in proportion to the concentration of ATP. Optimum conditions for the determination of ATP were also investigated. The dynamic range for the determination of ATP is 4.0 × 10−7 to 2.0 × 10−5 mol L−1, and the detection limit (3 σ/k) is 1.7 × 10−8 mol L−1. This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of ATP in real pharmaceutical samples. The mechanism of fluorescence enhancement of prulifloxacin–Tb3+ complex by ATP was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号