首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere.  相似文献   

2.
Although the temperature dependence of calcite‐water oxygen isotope fractionation seems to have been well established by numerous empirical, experimental and theoretical studies, it is still being discussed, especially due to the demand for increased accuracy of paleotemperature calculations. Experimentally determined equations are available and have been verified by theoretical calculations (considered as representative of isotopic equilibrium); however, many natural formations do not seem to follow these relationships implying either that existing fractionation equations should be revised, or that carbonate deposits are seriously affected by kinetic and solution chemistry effects, or late‐stage alterations. In order to test if existing fractionation‐temperature relationships can be used for natural deposits, we have studied calcite formations precipitated in various environments by means of stable isotope mass spectrometry: travertines (freshwater limestones) precipitating from hot and warm waters in open‐air or quasi‐closed environments, as well as cave deposits formed in closed systems. Physical and chemical parameters as well as oxygen isotope composition of water were monitored for all the investigated sites. Measuring precipitation temperatures along with oxygen isotope compositions of waters and calcites yielded empirical environment‐specific fractionation–temperature equations: [1] 1000 · lnα = 17599/T – 29.64 [for travertines with a temperature range of 30 to 70°C] and [2] 1000 · lnα = 17500/T – 29.89 [for cave deposits for the range 10 to 25°C]. Finally, based on the comparison of literature data and our results, the use of distinct calcite‐water oxygen isotopic fractionation relationships and application strategies to obtain the most reliable paleoclimate information are evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
We have analyzed the oxygen and hydrogen isotopic composition of juices from fruits and vegetables collected from a small orchard in order to investigate the differences in isotopic enrichment and evaporation intensity between fast-growing vegetables and slow-growing fruits grown under the same climatic conditions. The oxygen and hydrogen isotope levels were much higher in the juices of the fruits and vegetables than in the source waters in which they grew because of evaporation effects. According to our data, fast-growing vegetables are subject to greater evaporation than slow-growing fruits. An evaporation experiment using the source water showed that the oxygen and hydrogen isotopic composition of the 60-80% residual fraction was similar to that of the isotopically enriched grape juice, whereas those of the plume and tomato juices were very close to that of the 80-90% residual fraction, thus proving the effect of evaporation. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Analysis of post-nuclear detonation materials provides information on the type of device and its origin. Compositional analysis of trinitite glass, fused silicate material produced from the above ground plasma during the detonation of the Trinity nuclear bomb, reveals gross scale chemical and isotopic heterogeneities indicative of limited convective re-homogenization during accumulation into a melt pool at ground zero. Regions rich in weapons grade Pu have also been identified on the surface of the trinitite sample. The absolute and relative abundances of the lanthanoids in the glass are comparable to that of average upper crust composition, whereas the isotopic abundances of key lanthanoids are distinctly non-normal. The trinitite glass has a non-normal Nd isotope composition, with deviations of ?1.75 ± 0.60 ε (differences in parts in 104) in 142Nd/144Nd, +2.24 ± 0.75 ε in 145Nd/144Nd, and +1.01 ± 0.38 ε in 148Nd/144Nd (all errors cited at 2σ) relative to reference materials: BHVO-2 and Nd-Ames metal. Greater isotopic deviations are found in Gd, with enrichments of +4 ± 1 ε in 155Gd/160Gd, +4.19 ± 0.75 ε in 156Gd/160Gd, and +3.48 ± 0.52 ε in 158Gd/160Gd compared to BHVO-2. The isotopic deviations are consistent with a 239Pu based fission device with additional 235U fission contribution and a thermal neutron fluence between 1.4 and 0.97 × 1015 neutrons/cm2.  相似文献   

5.
Accurate determination of lithium (Li)isotopic composition in natural geological samples is the basis for Li isotope geochemical studies. In this study, a method contained preparation of geological materials (water and rock) and accurate determination of Li isotopic composition was set up. The separation of Li from water and rock samples was implemented by a single column containing 1.5 mL of Bio-Rad AG 50W-X12 (200–400 mesh) resin, with 0.40 M HCl and 1.0 M HCl as eluents. Only 8.5 and 14 mL of eluents were used to separate Li from water and rock samples with this method, respectively. Blank signal of the operation procedure was (2.4 ± 0.1) mV, which was almost same as the 2.3 mV of the 2% HNO3 signal used in this study. Experimental results showed that Li isotopic fractionation during leaching process was significant and deviation of δ7Li values in these samples with incompletely recovered Li reached up to 50‰. Lithium isotopic ratios were determined by multi-collector ICP-MS (Nu Plasma II) using the sample standard bracketing (SSB) method. L-SVEC standard with similar Li concentration to samples (about 80 ng mL?1) was used in this study. The external precision (2σ) of this technique, determined by repeated measurement of pure Li standard solutions and seawater was < ±0.8‰. The measured δ7Li values of seawater and rock standards AGV-2, BCR-2 and GSP-2 were +31.4‰ ± 0.7‰ (n = 18), +7.23‰ ± 0.16‰ (n = 4), +3.7‰ ± 0.7‰ (n = 8) and ?0.10‰ ± 0.18‰ (n = 4), respectively, similar to previously published values. This method could be used to accurately determine Li isotopic composition of various types of geological samples such as waters and rocks. The advantage of this method was that the amount of resin and reagent was reduced to 50% or less of the previous studies, thereby significantly improving the work efficiency and reducing the operation procedure blank.  相似文献   

6.
The microbial carbon and hydrogen isotope fractionation of benzene under sulfate‐reducing conditions was investigated within systems of increasing complexity: (i) batch laboratory microcosms, (ii) a groundwater‐percolated column system, and (iii) an aquifer transect. Recent molecular biological studies indicate that, at least in the laboratory microcosms and the column system, benzene is degraded by similar bacterial communities. Carbon and hydrogen enrichment factors (εC, εH) obtained from laboratory microcosms and from the column study varied significantly although experiments were performed under similar redox and temperature conditions. Thus, enrichment factors for only a single element could not be used to distinguish benzene degradation under sulfate‐reducing conditions from other redox conditions. In contrast, using correlation of changes of hydrogen vs. carbon isotope ratios (Λ = Δδ2H/Δδ13C), similar Λ‐values were derived for the benzene biodegradation under sulfate‐reducing conditions in all three experimental systems (Λlaboratory microcosms = 23 ± 5, Λcolumn = 28 ± 3, Λaquifer = 24 ± 2), showing the robustness of the two‐dimensional compound‐specific stable isotope analysis (2D‐CSIA) for elucidating distinct biodegradation pathways. Comparing carbon and hydrogen isotope fractionation data from recent studies, an overlap in Λ‐values was observed for benzene biodegradation under sulfate‐reducing (Λ = 23 ± 5 to Λ = 29 ± 3) and methanogenic (Λ = 28 ± 1 to Λ = 39 ± 5) conditions, indicating a similar initial benzene reaction mechanism for both electron‐acceptor conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The13C kinetic isotope fractionation in the decarbonylation of lactic acid of natural isotopic composition by sulfuric acid has been studied in the temperature range of 20–80°C. The13C(1) isotope separation in the decarbonylation of lactic acid by concentrated sulfuric acid depends strongly on the temperature above 40°C. Below this temperature the13C isotope effect in the decarbonylation of lactic acid by concentrated sulfuric acid is normal similarly as has been found inthe decarbonylation of lactic [1-14C] acid. The experimental values of k(12C)/k(13C) ratios of isotopic rate constants for12C and13C are close to, but slightly higher than theoretical13C-kinetic isotope effects calculated (neglecting tunneling) under the asumption that the C(1)-OH bond is broken in the rate-controlling step of the dehydration reaction. Dilution of concentrated sulfuric acid with water up to 1.4 molar (H2O)/(H2SO4) ratio caused the increase of the13C isotope fractionation from 1.0273 found in concentrated sulfuric acid at 80.5°C to 1.0536±0.0008 (at 80.6°C). A discussion of the abnormally high temperature dependence of14C and13C isotope fractionation in this reaction and the discussion of the problem of relative14C/13C kinetic isotope effects is given.  相似文献   

8.
This work describes the utilization of the laser ablation sector field inductively coupled plasma mass spectrometry (LA-SF-ICP-MS) technique for the determination of uranium isotopic composition in a highly enriched uranium sample. The measurements were performed on a continuous ablation with low energy density and defocusing, which demonstrated to be the optimum to reach the best signal stability. The measurements were improved by adjusting the following parameters: RF power, laser beam diameter, defocusing of laser beam, laser energy, laser energy density, auxiliary gas and sample gas. The 235U/238U isotope ratio with its respective uncertainty was 16.36 ± 0.15 and its precision was 1.12 % relative standard deviation. The uncertainties were estimated following the ISO GUM, with a confidence level of 95.45 % (k = 2.00). When compared the isotope abundances to the Round Robin Exercise Number 3’s average results a difference of 0.46 % has been found and when compared to supplier’s value, the difference was 0.41 %. The results presented by the measurements revealed that the LA-ICP-MS technique offers a rapid and accurate alternative to measure uranium isotope ratios without any sample preparation, since it allows carrying out the measurements straight on the sample. Moreover, it preserves the testimony—very important for safeguards and nuclear forensics purposes.  相似文献   

9.
Evaporation is one of the key attenuation processes for near‐surface volatile organic compounds (VOCs) in the upper soil zone. Evaporation experiments were performed to investigate the carbon isotope fractionation of benzene and toluene during progressive and non‐equilibrium evaporation at room temperature. Considerable carbon isotope fractionation occurred during evaporative enrichment of benzene and toluene. The carbon isotope compositions of residual compounds increased exponentially with increasing evaporation. Thus, the remaining liquids become isotopically heavier, and the process follows a Rayleigh trend. This result is compatible with the direction of isotopic changes associated with both microbial degradation and volatilization of hydrocarbons previously observed in soil columns, but shows exactly the opposite behavior to previous equilibrium volatilization findings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Hydrogen isotopic analysis of organic materials has been widely applied in studies of paleoclimate, animal migration, forensics, food and flavor authentication, and the origin and diagenesis of organic matter. Hydrogen bound to carbon (C‐H) generally retains isotopic information about the water present during organic matter synthesis and associated biosynthetic fractionations, but hydrogen bound to other elements (O, S, or N) can readily exchange with atmospheric water vapor and reflects recent exposure to water or vapor. These two pools must be separated to obtain meaningful information from isotope ratios of organic materials. Previously published analytical methods either replace exchangeable H chemically or control its isotopic composition, usually by equilibration with water or waters of known isotopic composition. In addition, the fraction of H that is exchangeable can vary among samples and is itself of scientific interest. Here we report an improved and automated double‐equilibration approach. Samples are loaded in a 50‐position autosampler carousel in an air‐tight aluminum equilibration chamber. Water vapor of known isotopic composition is pumped through the chamber at 115°C for at least 6 h. After flushing with dry N2 and being cooled, the carousel is rapidly transferred from the equilibration chamber to a He‐purged autosampler attached to a pyrolysis elemental analyzer connected to an isotope ratio mass spectrometer. By equilibrating two aliquots of each sample with two isotopically distinct waters, it is possible to calculate both (1) the D/H ratio of non‐exchangeable H, and (2) the fraction of H that is exchangeable. Relative to previous double‐equilibration techniques, this approach offers significant reductions in sample size and labor by allowing simultaneous equilibration of several tens of samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
High-precision (∼0.015%/mass) isotope ratio measurements of Fe may be obtained by using magnetic-sector thermal ionization mass spectrometry (TIMS), where rigorous correction of instrumentally produced mass fractionation can be made. Such corrections are best done by using a double-spike approach, which was first introduced several decades ago. However, previous derivations do not lend themselves to the high-precision isotope analysis that modern TIMS instruments are capable of because of various assumptions of mass fractionation laws or constant atomic weights. Moreover, some of these previous approaches took iterative approaches to the calculation, and none presented detailed error propagations. Here we present a completely general derivation to the double-spike approach that may be used for any appropriate isotope system and is applicable to the mass fractionation laws that are known to occur in TIMS. In addition, we present an assessment of error propagation as a function of algorithm and spike isotope composition. This approach has produced the highest precision Fe isotope ratio measurements yet reported, on the order of ±0.2 to 0.3 per mil for the 54Fe/56Fe ratio, that correct for instrumentally produced mass fractionation and yet retain natural, mass-dependent isotopic variations in samples.  相似文献   

12.
Hg isotopic ratios of NIES CRM No. 13 Human Hair were analyzed using cold vapor generation coupled to multi-collector inductively coupled plasma mass spectrometer to meet the growing demand for better understanding of Hg exposure routes by using Hg isotopic compositions in human hair samples. To validate and assure the accuracy of our analytical method, (1) the reproducibility of the Hg isotopic measurement was monitored and (2) the Hg isotopic compositions of four secondary reference materials—IAEA-085, IAEA-086, and CRPG-RL24H—were measured. Our results for NIES CRM No. 13 show the mass-dependent fractionation values of δ 199Hg = (2.13 ± 0.07) ‰, δ 200Hg = (0.98 ± 0.08) ‰, δ 201Hg = (2.77 ± 0.10) ‰, δ 202Hg = (1.89 ± 0.10) ‰, and δ 204Hg = (2.76 ± 0.16) ‰ (2SD, n = 11) and the mass-independent fractionation values of Δ 199Hg = (1.65 ± 0.06) ‰, Δ 200Hg = (0.04 ± 0.04) ‰, Δ 201Hg = (1.36 ± 0.07) ‰, and Δ 204Hg = (?0.04 ± 0.11) ‰ (2SD, n = 11). Interlaboratory comparison of the CRM performed at the University of Pau showed good agreement with the values obtained at NIES.  相似文献   

13.
Fujii T  Suzuki D  Watanabe K  Yamana H 《Talanta》2006,69(1):32-36
The total evaporation technique of thermal ionization mass spectrometry was applied to the isotopic analysis of chromium. High measurement reproducibility of the chromium isotope ratios was verified (2 S.E. < 0.05% (53Cr/52Cr)), while a clear mass fractionation effect was observed by using conventional measurement technique. The chromium isotope ratios analyzed by the total evaporation method were not affected by the sample amount on the rhenium filament (50-500 ng Cr). The isotopic analysis under the coexistence of zinc was also performed, and its effect to the chromium isotope ratios was confirmed.  相似文献   

14.
Triple isotope dilution mass spectrometry (triple IDMS) has been applied for the first time on protein quantification, especially on transferrin. Transferrin as an acute phase protein is a marker for several inflammation processes in the human body. Therefore, in Germany, the accurate and precise measurement of this important analyte is required. In this work, a new approach to triple IDMS is described and compared to double IDMS. Also, complete uncertainty budgets for both methods were set up to demonstrate the ability of this method to be used as a reference procedure. The relative expanded uncertainty (k?=?2) for triple IDMS (3.6 %) is smaller than the one for double IDMS (4.0 %). The content of transferrin found in the human serum reference material ERM-DA470k/IFCC ((2.41?±?0.08) g/kg) with both methods was in good agreement with each other and with the certificate. For triple IDMS ((2.426?±?0.086) g/kg) and for double IDMS ((2.317?±?0.092) g/kg), transferrin was determined. Although triple IDMS is a little more time consuming compared to double IDMS, there is the advantage that the isotopic composition of the spike material does not have to be determined. This is very useful especially in case of a marginal isotopic enrichment in the spike or problems with the accurate measurement of the spike isotope ratio.
Figure
Using triple instead of double species-specific IDMS helps to reduce the uncertainty and improves the reliability of the results, especially in cases where an accurate determination of the spike isotope ratio is difficult or impossible, because the spike ratio cancels from the equation  相似文献   

15.
In this work, a novel approach to measure isotope ratios via multi-collector—inductively coupled plasma—mass spectrometry (MC-ICP-MS) for low amounts of target element is proposed. The methodology is based on mixing of the sample (target element isolate) with a non-enriched in-house standard, previously characterized for its isotopic composition. This methodology has been applied to isotopic analysis of Cu and of Fe in whole blood samples. For this purpose, different mixtures of sample + in-house standard were prepared and adjusted to a final concentration of 500 μg/L of the target elements for isotopic analysis. δ65Cu, δ56Fe, and δ57Fe varied linearly as a function of the amount of in-house standard (or of sample) present in the mixture. The isotopic composition of the sample was calculated considering the isotope ratios measured for (i) the mixture and (ii) the in-house standard and (iii) the relative concentrations of target element contributed by the sample and the standard to the mixture, respectively. For validation purposes, the isotopic analysis of whole blood Cu was carried out using both the conventional (using 2 mL of whole blood) and the newly developed approach (using 500 μL of whole blood). The δ65Cu values obtained using mixtures containing 40 % (200 μg/L) of Cu from the blood samples and 60 % (300 μg/L) of Cu from the in-house standard were in good agreement with the δ65Cu value obtained using the conventional approach (bias ≤0.15?‰).  相似文献   

16.
Environmental transport of Tl is affected by redox reaction between Tl(I) and Tl(III) and ligand exchange reactions of them. In order to deepen the knowledge of Tl chemistry, we investigated fractionation of Tl stable isotopes (203Tl and 205Tl) in a chemical exchange system. Tl isotopes were fractionated in a liquid–liquid extraction system, in which aqueous and organic phases are hydrochloric acid solution and dichloroethane including a crown ether, respectively. After purification by ion-exchange chemistry, the isotope ratio of 205Tl/203Tl in equilibrated aqueous phase was measured precisely by multiple-collector–inductively-coupled-plasma–mass-spectrometry. A large isotope fractionation >1 ‰ was found. Electronic structures of possible Tl species (hydrated Tl+, Tl3+, and Tl chlorides) were calculated by ab initio methods, and the isotope fractionation factor was theoretically obtained. The isotope fractionation via intramolecular vibrations was calculated to be much smaller than the experimental result. The isotope fractionation via isotopic change in nuclear volume, named the nuclear field shift effect, was calculated to be >1 ‰ in Tl(I)–Tl(III) redox systems and/or ligand exchange systems of Tl(III). The nuclear field shift effect was found to be the major origin of Tl isotope fractionation.  相似文献   

17.
Although in many cases Pb isotopic analysis can be relied on for provenance determination of ancient bronzes, sometimes the use of “non-traditional” isotopic systems, such as those of Cu and Sn, is required. The work reported on in this paper aimed at revising the methodology for Cu and Sn isotope ratio measurements in archaeological bronzes via optimization of the analytical procedures in terms of sample pre-treatment, measurement protocol, precision, and analytical uncertainty. For Cu isotopic analysis, both Zn and Ni were investigated for their merit as internal standard (IS) relied on for mass bias correction. The use of Ni as IS seems to be the most robust approach as Ni is less prone to contamination, has a lower abundance in bronzes and an ionization potential similar to that of Cu, and provides slightly better reproducibility values when applied to NIST SRM 976 Cu isotopic reference material. The possibility of carrying out direct isotopic analysis without prior Cu isolation (with AG-MP-1 anion exchange resin) was investigated by analysis of CRM IARM 91D bronze reference material, synthetic solutions, and archaeological bronzes. Both procedures (Cu isolation/no Cu isolation) provide similar δ 65Cu results with similar uncertainty budgets in all cases (±0.02–0.04 per mil in delta units, k?=?2, n?=?4). Direct isotopic analysis of Cu therefore seems feasible, without evidence of spectral interference or matrix-induced effect on the extent of mass bias. For Sn, a separation protocol relying on TRU-Spec anion exchange resin was optimized, providing a recovery close to 100 % without on-column fractionation. Cu was recovered quantitatively together with the bronze matrix with this isolation protocol. Isotopic analysis of this Cu fraction provides δ 65Cu results similar to those obtained upon isolation using AG-MP-1 resin. This means that Cu and Sn isotopic analysis of bronze alloys can therefore be carried out after a single chromatographic separation using TRU-Spec resin. Tin isotopic analysis was performed relying on Sb as an internal standard used for mass bias correction. The reproducibility over a period of 1 month (n?=?42) for the mass bias-corrected Sn isotope ratios is in the range of 0.06–0.16 per mil (2 s), for all the ratios monitored.  相似文献   

18.
A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940 and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope 230Th from the decay of 234U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 ± 1.5 years.  相似文献   

19.
Uranium concentration in groundwater reflect both redox conditions and uranium content in host rock. In the present study an attempt has been made to study the uranium concentration and activity ratios of uranium isotopes to present the geochemical conditions of the groundwater in Malwa region of Punjab state, India and the reason for high uranium levels and variation of activity ratios from secular equilibrium conditions. Uranium concentration in groundwater samples was found to be in the range of 13.9 ± 1.2 to 172.8 ± 12.3 μg/l with an average value of 72.9 μg/l which is higher than the national and international guideline values. On the basis of uranium concentration, the groundwater of the study region may be classified as oxidized aquifer on normal uranium content strata (20 %) or oxidized aquifer on enhanced uranium content strata (80 %). The 238U, 235U and 234U isotopic concentration in groundwater samples was found to be in the range of 89.2–1534.5, 4.4–68.5, and 76.4–1386.2 mBq/l, respectively. Activity ratios of 234U/238U varies from 0.94 to 1.85 with a mean value of 1.11 which is close to unity that shows secular equilibrium condition. High value of 234U isotope than 238U may be due to alpha recoil phenomenon. The plot of AR of 234U/238U against the total uranium content in log scale reveals that the groundwaters of the study region either belongs to stable accumulation or normal oxidized aquifer.  相似文献   

20.
The δ2HVSMOW–SLAP value of total hydrogen of the international measurement standard NBS 22 oil was determined by a new method of sealing water in silver tubes for use in a thermal conversion elemental analysis (TC/EA) reduction unit. The isotopic fractionation of water due to evaporation is virtually non‐existent in this silver‐tube method. A new value for the δ2HVSMOW–SLAP of NBS 22 oil, calibrated with isotopic reference waters, was determined to be ?116.9 ± 0.8‰ (1σ and n = 31). Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号