首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为进一步研究冰与海洋结构物作用时的变形和影响,本文将岩土力学中的Smith屈服准则引入到冰材料的弹塑性分析中,从细观力学的角度分析了孔洞存在以及拉、压破坏强度不同的条件下冰材料的力学性能,构造了冰的本构方程;采用分区构造方法分析给出冰与矩形直立结构物作用时应力场的解析解;最后用数值分析的方法分析给出不同压力敏感性参数和拉压强度比下冰的极限承载力。分析结果表明Smith屈服准则能够准确反应孔洞的存在及拉压屈服强度不同对冰材料力学性能的影响。  相似文献   

2.
周智  兰春光  欧进萍 《实验力学》2006,21(5):655-660
冰压力是高纬度地区结构的重要荷载,然而传统的基于电阻应变计开发的冰压力传感装置在稳定性与耐久性上遇到难以跨越的难题。光纤光栅是目前在智能材料系统与结构健康监测研究与应用最为广泛的敏感材料之一,具有分布式绝对测量、抗腐蚀能力强等优点。本文基于双光纤光栅应变测量原理,考虑冰压力测试装置的环境条件,设计开发出冰压力传感装置,详细推导和试验验证了该装置的传感特性,并将试验与理论结果进行了对比。研究结果表明该装置具有温度自补偿、测量值与荷载作用点无关、线性度和重复性好、精度较高等优点,具有良好的应用前景。  相似文献   

3.
用不同模量有限元分析坝体应力和变形   总被引:7,自引:0,他引:7  
探讨拉,压不同模量有限元法在重力坝应力,变形分析中的应用,利用该方法计算坝体裂缝,接触,稳定问题明显地提高了分析精度,本指出,给定拉伸时的弹性模量和泊松比是重要的可能的。在岩土力学,冰力学,陶瓷和塑料的力学分析中,使不同模量有限元法必定会有实际意义。  相似文献   

4.
一种考虑剪切作用的各向异性超弹性本构模型   总被引:1,自引:0,他引:1  
基于纤维增强复合材料连续介质力学理论,提出了一种轮胎帘线/橡胶复合材料的各向异性超弹性本构模型. 应变能被分解为分别代表橡胶、帘线、帘线/橡胶之间的角剪切和正剪切应变能4个部分. 给出了模型参数的简单确定方法,通过拟合文献中的实验数据,得到了本构模型参数,并用该模型预测了其他变形条件下的力学行为,得到了和实验数据较一致的结果,验证了该模型的有效性,为整体轮胎的有限元分析打下了基础.  相似文献   

5.
刘小会  郝忠  严波 《应用力学学报》2016,(4):613-619,737
建立了四分裂导线大角度转动的力学模型,推导了扭矩对转角影响的理论公式。研究表明:两相邻间隔棒相对转动时回复力矩变化呈正弦曲线,最大的回复力矩发生在相对转角90°附近,而相对转角为180°时回复力矩为0,这是导线翻转后不能回复的本质原因。建立简单单档输电线不同步脱冰的力学模型,基于该模型获得的理论公式可预测不同步脱冰导致输电线翻转所需的覆冰载荷。研究表明,导线张力和次档距是影响导线翻转的关键参数。本文研究成果可应用于输电线路设计,对于防止输电线路翻转具有重要的理论意义和工程价值。  相似文献   

6.
黄国君 《力学学报》2021,53(3):693-702
冰激振动(ice-induced vibration, IIV)中的锁频共振严重威胁结构安全, 恶化人员工作环境,然而对其机理的认识仍然不清.本文基于作者和合作者以前建立的一个冰间歇破坏型IIV模型(黄国君和刘鹏飞,2009)对柔性结构的锁频共振机理进行了理论研究.应用该模型预报了发生在一个冰速区间内的锁频共振现象,并研究了结构和冰特性参数:结构阻尼和刚度以及冰的压缩刚度和冰破坏的破坏区长度、韧脆转换速度和随机性对IIV及锁频共振的影响,在此基础上探索了锁频共振机理. 研究表明: 在锁频共振冰速区间内,结构响应和冰力主频都锁定在结构固有频率,然而不同冰速下的频谱结构和振动形态各异,从常规单频共振到多频共振、从等幅振动到振幅周期性变化的拍振动,呈现出丰富的动力学特征;结构和冰特性参数可改变锁频共振冰速区间的长度和位置以及结构振幅,冰破坏的随机性和应变率效应发挥着一种竞争作用;锁频共振来源于冰破坏的应变率效应,其力学机制是频率调制和对结构-冰动能传递的非对称性正反馈效应放大的双重作用,本文分析揭示的这一新的锁频共振机理属于耦合振动,与传统的负阻尼自激振动机制有着本质区别.本文分析结果及对锁频共振机理的认识有助于相关实验研究和冰区结构设计以及IIV减振技术的研发.   相似文献   

7.
孙锦山 《力学进展》2009,39(4):460-466
介绍爆炸力学结合其他学科知识, 开展工程应用的理论和实验工作,进行爆炸装置的研究和设计.包括细观结构对材料力学性能的影响、金属自由面微喷以及多尺度数值模拟的应用.描述了作为应用基础学科的爆炸力学,在某些现代爆炸装置研制中多学科融合的爆炸力学将发挥重要作用.   相似文献   

8.
黄焱  王建平  孙剑桥 《力学学报》2022,54(6):1641-1650
天然冰材料在变形与破坏行为上的各向异性特征是冰与结构相互作用中产生复杂载荷过程的关键诱因, 而天然冰各向异性的根源则在于单晶冰的各向异性. 目前, 学术界针对单晶冰各向异性的数值模拟方法研究仍较为缺乏. 为了准确再现天然冰材料的特殊力学性质, 本文基于近场动力学理论, 提出了一种单晶冰弹性各向异性的数值模拟方法. 该方法的核心思想是将单晶冰杨氏模量沿不同加载方向的变化规律引入到近场动力学力密度向量的影响函数中. 以前人实验测试得到的杨氏模量值为参考, 通过开展与C轴呈0°, 45°和90°三个加载方向的单晶冰单轴压缩数值模拟实验, 提出了针对该影响函数的修正和辅助参数标定方法, 最终在15°, 30°, 60°和75°等其他四个加载方向进行了验证. 结果表明: 本文提出的针对影响函数的修正与参数标定方法, 能够较为便捷地找到数值模型杨氏模量与参考杨氏模量相一致的影响函数最优解, 即本文提出的基于影响函数的近场动力学数值模拟方法, 能够合理、准确地模拟单晶冰的弹性各向异性行为. 本文研究成果可为后续多晶冰各向异性数值模拟方法的建立提供基础性参考.   相似文献   

9.
主要研究侧向风载荷作用下小垂度覆冰悬索的非线性非平面运动的复杂动力学.根据分析力学、弹性力学和空气动力学理论,建立覆冰悬索3个自由度非线性振动的偏微分运动方程,并对其进行无量纲化,运用Galerkin方法对偏微分运动方程进行离散得到3个自由度的常微分方程,再利用多尺度法得到面内主共振2:1内共振的平均方程.利用数值方法研究悬索的非线性运动,结果表明系统呈现周期、多倍周期、概周期和混沌运动的规律.  相似文献   

10.
三向受力条件下淡水冰破坏准则研究   总被引:1,自引:0,他引:1  
为了更清楚地认识含冰冻结壁力学特性、解决复杂冰岩耦合问题以及给冰工程设计和数值仿真分析提供参数,有必要对冰在三向受力条件下的力学特性进行深入研究.以内蒙古自治区东胜煤田石拉乌素矿立井井筒建设为背景,参考现场水文地质资料在室内制作相似冰样,利用TDW-200低温冻土试验机,进行了4组温度和7组围压的人工淡水柱状冰三轴压缩强度试验,加载速率为0.5 mm/min,加载方向垂直于冰的晶轴方向.结果表明:在恒定温度条件下,柱状冰随围压增大塑性增强,而恒定围压条件下,柱状冰随温度降低脆性增强;在试验温度范围内,淡水柱状冰和多晶冰强度均随围压、温度升高而增大,但同条件下柱状冰强度高于多晶冰;采用D-A模型、Teardrop模型解释了高压下偏应力与围压之间的非线性关系,从不同角度对拟合得到的破坏准则综合考虑,认为D-A准则更适合用于描述淡水冰的破坏特征.研究结果可为后期同条件冰-岩耦合、数值模拟研究提供参考.  相似文献   

11.
Tire lateral force data on winter surfaces cannot be obtained with the traditional laboratory test technique of an instrumented tire on a moving belt surface. Furthermore, changing snow and ice conditions can drastically change the tire/surface interaction. In this study the Cold Regions Research and Engineering Laboratory’s (CRREL’s) Instrumented Vehicle (CIV) was used in a unique configuration to measure tire lateral force versus slip-angle data on ice and snow at various temperatures, moisture contents, depths, and densities. The vehicle is instrumented to record longitudinal, lateral, and vertical force at the tire contact patch of each wheel as well as vehicle speed, tire speed, and front tire slip angle. The tests were conducted at the Keweenaw Research Center (KRC) in northern Michigan in February 2005 and March 2006. Tests were conducted on ice, packed snow from 0.50 to 0.58 g/cc, remixed snow depths of 2.5–20.3 cm at 0.43 to 0.48 g/cc and freshly fallen snow with depths of 0.5–17 cm at 0.07 to 0.23 g/cc. Surface air temperatures during testing ranged from −14 to 1.6 °C. The data collected show that peak lateral force and the shape of the lateral force versus slip-angle curve are related to snow properties and depths.  相似文献   

12.
As longitudinal slip affects vehicle–pavement interactions on roads and hard surfaces, so too does it play an important role in interactions between vehicles and soft terrains, including snow. Although many slip-based models have been developed recently for tire–snow interactions (e.g., [1] and references cited therein), these models have only been partially validated, due to a lack of relevant experimental data. This paper presents comprehensive data from tests that were performed using a newly-developed test vehicle traversing natural snowy terrain, over a wide range of values for longitudinal slip, vertical load and torque via an effective accelerate/brake maneuver. Drawbar pull, motion resistance, wheel states and tire stiffness were presented as a function of slip; tire sinkage was obtained using a laser profilometer; strength and depth of snow were found using a snow micropenetrometer. The effects of the rear tire going over snow compacted by the front tire were also studied. The maximum traction force normalized by the vertical load is found to be ≈0.47, maximum motion resistance normalized by the vertical load is ≈0.4. Comparison of the trend and order-of-magnitude of test results with those from existing slip-based numerical model [1] shows good comparison in motion resistance, tire sinkage, and longitudinal stiffness, but indicates that a better traction model is needed to improve the comparison.  相似文献   

13.
An analytical model to estimate longitudinal traction of a tire in snow was developed and verified to have good predictability in comparison with measurements. Snow traction of a tire is composed of four kinds of forces in this model: braking force attributable to snow compression, shear force of snow in void (space between tread blocks), frictional force, and digging force (edge effect generated by sipes and blocks). The mechanical characteristics of snow were considered in the prediction of braking force and shear force, but were not considered in the prediction of other forces. The contribution of shear force of snow in void and the frictional force was large in static traction (traction just before a tire slips). On the other hand, the contributions of digging force and frictional force were large in situations involving high slip ratios.  相似文献   

14.
Significant challenges exist in the prediction of interaction forces generated from the interface between pneumatic tires and snow-covered terrains due to the highly non-linear nature of the properties of flexible tires, deformable snow cover and the contact mechanics at the interface of tire and snow. Operational conditions of tire-snow interaction are affected by many factors, especially interfacial slips, including longitudinal slip during braking or driving, lateral slip (slip angle) due to turning, and combined slip (longitudinal and lateral slips) due to brake-and-turn and drive-and-turn maneuvers, normal load applied on the wheel, friction coefficient at the interface and snow depth. This paper presents comprehensive three-dimensional finite element simulations of tire-snow interaction for low-strength snow under the full-range of controlled longitudinal and lateral slips for three vertical loads to gain significant mechanistic insight. The pneumatic tire was modeled using elastic, viscoelastic and hyperelastic material models; the snow was modeled using the modified Drucker-Prager Cap material model (MDPC). The traction, motion resistance, drawbar pull, tire sinkage, tire deflection, snow density, contact pressure and contact shear stresses were obtained as a function of longitudinal slip and lateral slip. Wheel states - braked, towed, driven, self-propelled, and driving - have been identified and serve as key classifiers of discernable patterns in tire-snow interaction such as zones of contact shear stresses. The predicted results can be applied to analytical deterministic and stochastic modeling of tire-snow interaction.  相似文献   

15.
Traction on winter surfaces was measured using three instrumented vehicles, each designed to measure traction for a different purpose: vehicle mobility research (CRREL instrumented vehicle), commercial tire testing (Uniroyal-Goodrich traction tester), and airport runway safety (Saab friction tester). The traction measured with each method is comparable but there are systematic differences due to the effects of the surface materials and test and analysis techniques. This comparison serves as the basis for collaboration between the various traction testing communities and illustrates the need for well documented, standard test and analysis procedures for traction testing and evaluation.  相似文献   

16.
An indoor traction measurement system for agricultural tires   总被引:1,自引:0,他引:1  
To reliably study soil–wheel interactions, an indoor traction measurement system that allows creation of controlled soil conditions was developed. This system consisted of: (i) single wheel tester (SWT); (ii) mixing-and-compaction device (MCD) for soil preparation; (iii) soil bin; (iv) traction load device (TLD). The tire driving torque, drawbar pull, tire sinkage, position of tire lug, travel distance of the SWT and tire revolution angle were measured. It was observed that these measurements were highly reproducible under all experimental conditions. Also relationships of slip vs. sinkage and drawbar pull vs. slip showed high correlation. The tire driving torque was found to be directly influenced by the tire lug spacing. The effect of tire lug was also discussed in terms of tire slip.  相似文献   

17.
Traction and braking performances of automobile tire on the snow road are quite distinct from those on the dry or wet road, because of the complicated snow deformation caused by the complex tread blocks. In fact, the mathematical formulation of the snow deformation is extremely difficult, because not only it depends on the loading condition but its material properties are significantly dependent on the icing state (i.e. the snow density). The purpose of the current study is to introduce a numerical simulation of the snow–tire interaction by making use of Lagrangian finite element method and Eulerian finite volume method. The interaction between the tire tread blocks and the snow deformation is implemented by the explicit Euler–Lagrangian coupling scheme. The multi-surface yield model is adopted to describe both the softening and yielding of snow, and the associated material properties are chosen based upon the existing data in literature and the preliminary verification simulation. The numerical experiments are carried out by MSC/Dytran to investigate the parametric characteristics of the snow traction to the snow hardness, the block depth and the tread pattern.  相似文献   

18.
冬奥冰雪运动摩擦阻力影响运动健儿成绩,减少滑雪板与雪面之间摩擦阻力,有助于提升滑雪时的行进速度,提高运动员成绩排名. 研究冰雪表面摩擦学,有助于认识冰雪表面水润滑机理,为设计高性能滑雪板和雪蜡材料提供相关的研究基础. 因此,本文作者从冰雪表面摩擦学开始,简要介绍冰雪表面水润滑机理及影响冰雪表面摩擦学性能的影响因素,如环境参数(运动环境的温度/湿度)、雪基参数(雪面硬度、密度,雪面温度/湿度、冰晶大小、雪面污染物)、滑雪板基底参数及雪蜡的使用等;着重介绍了滑雪运动必备的材料-滑雪板减阻蜡的作用和分类,含氟雪蜡对人员环境的危害,雪蜡的选择与打蜡方式对雪板减阻性能的影响以及国内外现有的冰雪摩擦测试装置. 最后,对我国现有冰雪摩擦学基础研究,冰雪运动摩擦学及雪蜡材料的应用开发研究提出了几点建议和期望.   相似文献   

19.
We designed and built a 24-kg tracked robot, named SnoBot, based on the performance of a 1400-kg manned vehicle scaled using Bekker mobility theory. We then documented the mobility of the robot for 10 cases of deep snow and four cases of shallow snow. The scaled predictions agreed well with average sinkage, resistance and traction measured in deep snow and thus gave useful design guidance. Nevertheless, large differences occurred between measured and predicted snow-compaction resistance on individual test days. The behavior of actual snow packs is difficult to capture using simple Bekker theory. Most deep-snow packs showed a linear relationship between pressure and sinkage for small indentation, followed by a steep rise in pressure as indentation compacted the snow against the ground. Also, small strength variations due to icy layers were important. SnoBot traveled easily over ice crusts that were much too weak to support foot travel. The results indicate that a lightweight tracked robot can display excellent deep-snow mobility when ground clearance, motor torque and energy storage allow for proportionally high sinkage and motion resistance compared with larger vehicles.  相似文献   

20.
Driving on ice is still a risky activity. Research has investigated the factors contributing to the friction mechanism and has reported experimental studies of pneumatic tyres on ice in order to develop models that predict tractive and braking performance on ice/snow. Therefore, developing testing methods to obtain relevant experimental data for the validation of models is equally important.There are agricultural and industrial vehicles which are also designed for pulling but there are no specific studies reporting experimental tests on traction force of such machines in snowy conditions. However, this issue is very topical, as demonstrated by the appearance on the market of winter tyres for such vehicles.This study presents a method for testing winter tyres in outdoor test facilities with a focus on traction performance. The conclusions will serve in future investigations as a concise knowledge source to develop improved testing facilities and tyre–ice interaction models, aiding the development of better tyre designs and improved vehicle safety systems.The functional tests hereafter described have been carried out with the aim of evaluating the possibility of measuring the influences of different technique solutions on the performance of certain 17.5 R25 sized industrial tyres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号