首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This study continues a cycle of works published in Optika i Spektroskopiya (Optics and Spectroscopy) on the magnetomechanical effect in a gas discharge. It is devoted to the hypothesis of the appearance of a torque acting on an object placed in a gas discharge in a magnetic field and arising due to the momentum transfer from the rotating neutral gas. The velocities of gas rotation required for the formation of the observed moment of forces are estimated. Measurements of the velocities performed using laser Doppler anemometry are analyzed. The method of observing dust structures in a magnetic field to reveal gas rotation is justified. Corresponding experiments with the use of the method of optical visualization for the observation of plasma-dust structures are conducted. The experimental dependence ω(r) obtained for a liquidlike structure is not consistent with the hypothesis of the transfer of rotation from the gas. Additional observations of dust plasma upon tilting of the discharge tube in the gravitational field are conducted. It is found that, in this case, the structure shifts from the central region of the stratum to the periphery and the rotation ceases. Neither the analysis nor the experiments performed in this study are consistent with the hypothesis of gas rotation in the magnetomechanical effect. The results of the experiments with dust structures are of independent interest for the physics of dust plasma.  相似文献   

2.
3.
Self‐organized dust structures are investigated using a Gurevich‐Parker model for non‐linear dust screening. The non‐linear dust drag coefficients and non‐linear diffusion coefficients are calculated numerically as functions of nonlinear parameter for screening, dust density and ion flux drift velocity. Nonlinear ion dust drag inside the structures creates an electric field with potential well for ions at the structure center. The equilibrium dust structures confine both the dust grains and the plasma particles, have a finite size and have inside an enhanced dust and ion densities. The necessary conditions for existence of equilibrium dust structures are found. The equilibrium dust structures are determined by two global parameters related to the external plasma flux and to the power of ionization. The equilibrium exist only in a restricted phase space of these two parameters and depends on the the drag coefficient at the structure center. The equilibrium requirements are found using non‐linear drag coefficient calculated numerically. It is shown that this phase space area can be broad but it is systematically decreasing with an increase of the ionization rate. It is found that equilibrium exists for dust structures with large dust and ion density concentration at the center and that for these structures the ion diffusion is strongly suppressed by ion scattering on non‐linearly screened grains. The results of the theory can be used to interpret the recently observed compact dust structures in micro‐gravity experiments and can provide some recommendations for future micro‐gravity experiments in spherical chambers (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Under certain conditions in a dusty plasma, which is a low-temperature plasma with dust grains, the strong interaction between grains can give rise to gas-liquid-solid-state phase transitions. A study is made of ordered (liquidlike and crystalline) grain structures in various kinds of dusty plasmas: a thermal plasma at atmospheric pressure, a plasma of a dc glow discharge, and a UV radiation-driven plasma. The results of experimental observations of ordered dust structures are reported, and the characteristic features of the dust structures and the conditions for their appearance are discussed.  相似文献   

5.
A dusty plasma in a dc gas discharge is considered at low (cryogenic) temperatures of the gas. The formation of dusty plasma structures consisting of monodisperse poly(styrene) particles (d = 5.44 μm) in a dc glow discharge is experimentally investigated at cryogenic temperatures in the range from 4.2 to 77 K, and the results obtained are presented. The ion velocity distribution function and the charging of dust particles at cryogenic temperatures are calculated using the molecular dynamics method. The primary attention is focused on the correct inclusion of ion-atom collisions in the analysis. This is essential to the understanding of the main mechanisms of the experimentally observed increase in the density of dust particles with decreasing temperature of the gas in the discharge.  相似文献   

6.
Considering the Boltzmann response of the plasma ions and electrons and inertial dynamics of the charged dust grains, the possibility of very weak compressive soliton near the continuum limit of the dust population has been inferred. It is concluded that the behaviour of such coherent structures could be well described by the numerical analysis of the derived nonlinear classical energy integral equation for bounded solutions. These seem to be higher order dispersive structures within acoustic limit of the nonlinear turbulence. It is observed that the dust density enhancement beyond the continuum threshold causes regular increment in width and amplitude of the soliton structures. It is found that the soliton amplitude sensitively depends on the massive impurity’s population. These coherent structures could be visualized as weakly charged solitary dust clouds of finite extension (∼ plasma Debye length) within Boltzmann environment of plasma particles in their local surroundings. The seeding mechanism of such clouds may be attributed to some plasma instabilities driven by either internal or external free energy sources. Numerical analysis of the problem concludes that the experimental observations of such clouds could be possible in low density plasma regime. It is deduced that for plasma density ∼ 106 cm-3 at temperatures of a few electron volts and for micron to l0nm sized dust grains, the observation of such structures could be possible within wide range variability of the dust population density.  相似文献   

7.
8.
In present work the formation of dusty plasma structures in cryogenic glow dc discharge was investigated. The ordered structures from large number (~104) of charged diamagnetic dust particles in a cusp magnetic trap have been also studied in microgravity conditions. The super high charging (up to 5·107e) of dust macroparticles under direct stimulation by an electron beam is experimentally performed and investigated. The results of the investigation of Brownian motion for strongly coupled dust particles in plasma are presented. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We analyze the structure of the space electric charge that appears in the vicinity of a charged dust particle in a moving conductive medium. We show that when the conduction currents play a major role, the screening space charge is concentrated in the form of a thin wake behind the dust particle, while the total Coulomb field forms a dipole structure and serves as an attractive center for other particles with charges of the same sign. We consider the pairing conditions for such particles. Including the polarization contribution from the dust component to the permittivity radically changes the field structure when the dust particle concentration approaches the dissipative instability threshold. In this case, the zone of attraction of like-charged dust particles expands sharply. Estimates suggest that the effects under consideration can govern the formation of regular structures in a moving dusty plasma at fairly high pressures, P > 0.1–1 mbar.  相似文献   

10.
Master equations for spherical dust structures are solved numerically using the asymptotic solutions at the center of the structures for the case of absence of external ionization and small diffusions. The structures are determined by a single parameter, the external plasma flux at the surface of the structure. The equilibrium states that are possible in a limited range of this parameter are investigated numerically. It is demonstrated that in the range of existence of equilibria the structures are changing their shapes and type of distributions inside the structures. For large external fluxes the ion and dust distributions can have peaks inside the structures while for low external fluxes the dust distribution has a single maximum at the structure center. The lower is the external flux supporting the structure the larger is its size. An increase of the external flux decreases the accumulation of dust and ions at the center. The total number of dust confined by the structure is larger for larger size structures. Estimates of dust crystallization inside structures are given. The role of diffusion is calculated by perturbations and is shown to be small in all structure regions except the structure edges. In the perturbation theory we use the exact expressions of the diffusion coefficients calculated previously numerically. The regions with dust density peaks inside the structures have been calculated with two order of magnitude larger precision that allows to resolve the structure parameter dependencies inside the peaks. It is shown that although in peaks the gradients of all parameters are increased the diffusion flux is still small and that the continuity and hydrodynamic approach are applicable within an accuracy about several %‐s (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Hafeez Ur-Rehman 《中国物理 B》2013,22(3):35202-035202
Using the reductive perturbation method, we have derived the Kadomtsev-Petviashvili (KP) equation to study the nonlinear properties of electrostatic collisionless dust ion-acoustic solitons in the pair-ion (p-i) plasmas. We have chosen the fluid model for the positive ions, the negative ions, and a fraction of static charged (both positively and negatively) dust particles. Numerical solutions of these dust ion-acoustic solitons are plotted and their characteristics are discussed. It is found that only the amplitudes of the electrostatic dust ion-acoustic solitons vary when the dust is introduced in the pair-ion plasma. It is also noticed that the amplitude and the width of these solitons both vary when the thermal energy of the positive or negative ions is varied. It is shown that potential hump structures are formed when the temperature of the negative ions is higher than that of the positive ions, and potential dip structures are observed when the temperature of the positive ions supersedes that of the negative ions. As the pair-ion plasma mimics the electron-positron plasma, thus our results might be helpful in understanding the nonlinear dust ion acoustic solitary waves in super dense astronomical bodies.  相似文献   

12.
《Physics letters. A》1999,264(4):318-323
Linear and nonlinear studies of dust lattice waves in a dusty plasma crystal have been carried out on the basis of the Schrödinger equation which is deduced from Poisson's equation for small dust grain potentials. The spatial distribution of the potential in the dust-lattice includes the effect of the whole system of the dust particles. Such a self-consistent analysis gives a dispersion relation for the dust lattice wave, which is different from the expression found earlier. The frequency of the lattice oscillation increases considerably for large grain charges. Furthermore, it is found that an ideal lattice can only exist if the dusty plasma parameters satisfy a definite relationship between the dusty plasma Debye radius, the inter-grain separation, and the grain size. Finally, accounting for the weak nonlinearities, we also derive a Korteweg-de Vries (KdV) equation for the nonlinear dust lattice waves in the long wavelength approximation (kd≪1), where k is the wave number and d the inter-grain spacing.  相似文献   

13.
The main goal here is to study theoretically the formation of plasma sheath in an inhomogeneous dusty plasma. The effect of weak ionization of the dust grains as similar to the Townsend discharge has been incorporated to see how it influences the evolution of sheath. Sheath equation has been derived to describe the properties of sheath structures analytically and numerically. It has shown that the ionization along with the inhomogeneity affects significantly the growth of sheath which has been highlighted elaborately for some typical plasma parameters. After getting well defined sheath region, dynamical behaviour of levitated dust grains into the sheath has been studied. The totality of the findings has been centred around the estimation of dust surface potential, dust sizes along with the generation of net force on dust grains. Both inhomogeneous and ionization effects allow the dust grains in acquiring different potential to sustain equilibrium in different places. As a result of this, nebulons and the dust cloudlike structures are electrically charged.  相似文献   

14.
王红艳  段文山 《物理学报》2007,56(7):3977-3983
得到了描述由尘埃颗粒电荷变化、非热力学平衡分布的离子和Boltzmann分布的电子组成的未磁化的热尘埃等离子体中的尘埃声波的修正的KdV (mKdV) 方程. 并对诸多的尘埃等离子体参数对尘埃声孤波结构的影响进行了理论研究,结果表明,尘埃等离子体参数决定着尘埃声孤波结构,且只在这些参数特别选定的一些区域,才会出现稳定的孤波. 关键词: 非热力学平衡离子 尘埃颗粒电荷变化 尘埃声孤波  相似文献   

15.
A.A. Mamun 《Physics letters. A》2008,372(9):1490-1493
The nonlinear propagation of dust-ion-acoustic (DIA) waves in an adiabatic dusty plasma (containing adiabatic inertial-less electrons, adiabatic inertial ions, and negatively charged static dust) is investigated by the pseudo-potential approach. The combined effects of adiabatic electrons and negatively charged static dust on the basic properties (critical Mach number, amplitude, and width) of small as well as arbitrary amplitude DIA solitary waves are explicitly examined. It is found that the combined effects of adiabatic electrons and negatively charged static dust significantly modify the basic properties (critical Mach number, amplitude, and width) of the DIA solitary waves. It is also found that due to the effect of adiabaticity of electrons, negative DIA solitary waves [which are found to exist in a dusty plasma (containing isothermal electrons, cold ions, and negatively charged static dust) for α=zdnd0/ni0>2/3, where zd is the number of electrons residing onto a dust grain surface, nd0 is the constant (static) dust number density and ni0 is the equilibrium ion number density] disappears, i.e. due to the effect of adiabatic electrons, one cannot have negative DIA solitary waves for any possible set of dusty plasma parameters [0?α<1 and 0?σ=Ti0/Te0?1, where Ti0 (Te0) is electron (ion) temperature at equilibrium].  相似文献   

16.
Thermophoretic effects on dust structures under temperature gradients in glow and radio-frequency discharge plasmas are studied experimentally. The geometry of dust structures consisting of micrometer-sized polydisperse grains depends on heat release in the plasma. Thermophoretic forces associated with heat release can control the formation of dust structures of different geometries. A theoretical model is proposed to describe dust separation with respect to grain size caused by the effects of radial electrostatic and thermophoretic forces. The glow discharge currents under critical conditions for grain separation predicted by the model agree with those observed experimentally.  相似文献   

17.
We present investigations of the combined effects of Debye–Hückel repulsive and overlapping Debye spheres attractive interaction potentials around charged dust particles on collective modes, phase separation and ordered structures in a strongly coupled dusty plasma. We obtain static and dynamical information via Molecular Dynamics simulations in the liquid and crystallized phases and identify the onset of an instability in the transverse mode, by using lattice summation method. The results are useful for understanding the origin of coagulation/agglomeration of charged dust particles and the formation of ordered dust structures in low-temperature laboratory and space plasmas.  相似文献   

18.
Dust-acoustic (DA) waves (DAWs) and their modulational instability (MI) have been investigated theoretically in a plasma system consisting of inertial opposite polarity (positively and negatively) warm adiabatic charged dust grains as well as inertialess non-extensive q?distributed electrons and non-thermal ions. A nonlinear Schrödinger equation (NLSE) is derived by using the reductive perturbation method. It has been observed from the analysis of NLSE that the modulationally stable solitary DAWs give rise to the existence of dark envelope solitons, and that the modulationally unstable solitary DAWs give rise to the existence of bright envelope solitons or rogue structures. It is also observed for the fast mode of DAWs that the basic features (viz. stability of the DAWs, MI, growth rate, amplitude, and width of the DA rogue waves, etc.) are significantly modified by the related plasma parameters (viz. dust masses, dust charge state, non-extensive parameter q, and non-thermal parameter α). The results of our present investigation might be useful for understanding different nonlinear electrostatic phenomena in both space (viz. ionosphere and mesosphere) and laboratory plasmas (viz. high intensity laser irradiation and hot cathode discharge).  相似文献   

19.
The results of experimental investigation of macroparticle transport in the dusty plasma of a capacitive high-frequency discharge under microgravity conditions are considered. Experimental data were obtained for monodisperse polymer particles of radius a p =1.7 mm in a wide range of plasma parameters on the International Space Station. Analysis of macroparticle dynamics for a strongly nonideal dusty plasma, including diffusion and dust vortex formation processes, is carried out.  相似文献   

20.
A dusty plasma system consisting of electrons, ions, and negative as well as positive dust particles has been considered. The basic properties of arbitrary amplitude solitary potential structures that may exist in such a multi-component dusty plasma have been theoretically investigated by the pseudo-potential approach. It has been found that the presence of additional positive dust component does not only significantly modify the basic properties of solitary potential structures, but also causes the coexistence of positive and negative solitary potential structures, which is a completely new feature shown in a dusty plasma with dust of opposite polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号