首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New numerical results concerning unstably stratified homogeneous turbulence are presented. The system of equations considered gives the dynamics of homogeneous incompressible binary mixtures submitted to a gravity field in the low Atwood number limit (Boussinesq approximation). It allows to gain insight into several characteristics relevant to buoyancy driven turbulent mixing, such as unsteadiness and anisotropy. In this work, the dependency of the asymptotic self-similar states on different dissipation processes is extensively explored. The resulting states are shown to agree with recent theoretical predictions based on a large scale dynamics analysis.  相似文献   

2.
In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k?3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k?3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k?11/5 form at large scales, to a steeper approximate k?3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k?1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k?2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k?1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.  相似文献   

3.
The representation theory of the rotation group is applied to construct a series expansion of the correlation tensor in homogeneous anisotropic turbulence. The resolution of angular dependence is the main analytical difficulty posed by anisotropic turbulence; representation theory parametrises this dependence by a tensor analogue of the standard spherical harmonics expansion of a scalar. The series expansion is formulated in terms of explicitly constructed tensor bases with scalar coefficients determined by angular moments of the correlation tensor.  相似文献   

4.
This paper investigates the effective eddy viscosity inferred from direct numerical simulations of decaying stratified and non-stratified turbulence. It is shown that stratification affects the horizontal eddy viscosity dramatically, by increasing non-local energy transfer between large and small horizontal scales. This non-local horizontal energy transfer is around 20% of the local horizontal energy transfer at the cutoff wavenumber kc = 40. The non-local horizontal energy transfer occurs at large vertical wavenumbers, which may be larger than the buoyancy wavenumber kb = N/urms, where N is the buoyancy frequency and urms is the root-mean-square velocity. By increasing the value of the test cutoff wavenumber kc from large scales to the dissipation range, the non-local horizontal eddy viscosity decreases and the local eddy viscosity is dominant. Overall, the presence of stratification can significantly change the features of subgrid-scale (SGS) motions. Current SGS models should, therefore, be modified for use in large-eddy simulation of stratified turbulence.  相似文献   

5.
Stable stratification turbulence, as a common phenomenon in atmospheric and oceanic flows, is an important mechanism for numerical prediction of such flows. In this paper the large eddy simulation is utilized for investigating stable stratification turbulence numerically. The paper is expected to provide correct statistical results in agreement with those measured in the atmosphere or ocean. The fully developed turbulence is obtained in the stable stratification fluid by large eddy simulation with different...  相似文献   

6.
The dynamics of homogeneous shear turbulence laden with spherical finite-size particles is investigated using fully resolved numerical simulations to understand how the presence of particles modulates turbulent shear flows. We focus on a dilute flow laden with non-sedimenting particles whose diameter is slightly smaller than or comparable with those of vortex cores in turbulence. An immersed boundary method is adopted to represent a spherical finite-size particle. Numerical results show that the presence of particles augments the viscous dissipation of turbulence kinetic energy, which leads to a slower increase in the turbulence energy. Although the augmentation of energy dissipation occurs predominantly inside viscous layers surrounding particles in an initial period, the contribution from their outside becomes more significant due to the modification of turbulence structures as turbulence develops. It is found that the particles exhibit weak tendency to accumulate in vortex layers. The particles approaching and colliding with vortex layers induce large velocity fluctuations, which leads to the generation and shedding of thin vortex tubes. Newly generated vortex tubes interact with developed vortex tubes and layers, and modify the entire structure of the vorticity field.  相似文献   

7.
Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.  相似文献   

8.
We review some advances in the theory of homogeneous, isotropic turbulence. Our emphasis is on the new insights that have been gained from recent numerical studies of the three-dimensional Navier Stokes equation and simpler shell models for turbulence. In particular, we examine the status of multiscaling corrections to Kolmogorov scaling, extended self similarity, generalized extended self similarity, and non-Gaussian probability distributions for velocity differences and related quantities. We recount our recent proposal of a wave-vector-space version of generalized extended self similarity and show how it allows us to explore an intriguing and apparently universal crossover from inertial- to dissipation-range asymptotics.  相似文献   

9.
We investigate the self-similar evolution of the transient energy spectrum, which precedes the establishment of the Kolmogorov spectrum in homogeneous isotropic turbulence in three dimensions using the EDQNM closure model. The transient evolution exhibits self-similarity of the second kind and has a non-trivial dynamical scaling exponent, which results in the transient spectrum having a scaling that is steeper than the Kolmogorov k−5/3 spectrum. Attempts to detect a similar phenomenon in DNS data are inconclusive, owing to the limited range of scales available.  相似文献   

10.
The phase spaces of finite Fourier representations of ideal, incompressible, homogeneous fluid and magneto-fluid turbulence are discussed. Helical invariance allows the definition of set-theoretic characteristic functions which partition the various ensemble phase spaces into disjoint components. This explicit disjointness explains the previously observed nonergodicity in ideal, incompressible, homogeneous turbulence.  相似文献   

11.
We present the results of an experimental study of the spatial Fourier modes of the vorticity in a turbulent jet flow. By means of an acoustic scattering setup we have recorded the evolution in time of Fourier modes of the vorticity field, characterized by well defined wavevectors k. By computing the auto-correlation of the amplitude of the Fourier modes we evidence that, whatever the length scale (or equivalently k), the dynamic evolution of the vorticity field involves two well separated time scales. We have also performed the simultaneous acquisitions of pairs of Fourier modes with two wavevectors k and k'. Whatever the spectral gap k- k', any pair of Fourier modes exhibits a significant cross-correlation over long time delays, indicating a strong statistical dependence between scales.  相似文献   

12.
13.
Fully resolved simulations of homogeneous shear turbulence (HST) laden with sedimenting spherical particles of finite size have been performed to clarify the effects of gravity on the development of particle-laden turbulent shear flows. We consider turbulence in a horizontal flow subjected to vertical or horizontal shear. Numerical results show that the development of HST laden with finite-size particles are significantly altered by gravity. The effects of gravity lead to a slower increase in the Taylor-microscale Reynolds number, whose value is found to be well correlated with the average particle Reynolds number. The gravity also causes a slower increase in the turbulence kinetic energy (TKE) through the enhancement of energy dissipation. The change in the Reynolds shear stress (RSS) due to particles also significantly contributes to the relative change in TKE. In vertically sheared cases, RSS has high values between counter-rotating trailing vortices behind the particles, which causes a transient relative increase in TKE. In horizontally sheared cases, on the other hand, RSS is reduced in the wakes of particles, which contributes to a significant relative reduction in TKE.  相似文献   

14.
15.
The decay of turbulent kinetic energy in nearly isotropic grid turbulence has been studied extensively as a fundamental point of reference for turbulence theories and numerical simulations. Most studies have focused on nearly homogeneous turbulence characterised by power-law decay. Other studies have focused on so-called shearless mixing layers, in which two regions with the same mean velocity but distinctly different kinetic energy levels slowly diffuse into each other downstream thus providing information about spatial transport of turbulence. Here, we introduce and study another type of shearless turbulent flow. It has initially a nearly uniform spatial gradient of kinetic energy of the form k ~ β(y ? y0), where y is the spanwise position. In the experiments, this gradient is generated with the use of an active grid and screens mounted upstream of the wind-tunnel’s test section, iteratively designed to produce a uniform gradient of turbulent kinetic energy without mean velocity shear. Data are acquired using X-wire thermal anemometry at different spanwise and downstream locations. Profile measurements are used to quantify the constancy of the mean velocity and the linearity of the initial profile of kinetic energy. Measurements show that at all spanwise locations, the decay in the streamwise direction follows a power-law but with exponents n(y) that depend upon the spanwise location. The results are consistent with a decay of the form k/?u?2 = β(x/xref)?n(y)(y ? y0)/M. Results for the development of integral length scale, and for velocity skewness and flatness factors are also presented. Significant deviations from Gaussianity are observed especially for the spanwise velocity component in the lower kinetic energy region. Future experiments will be needed including measurements of the dissipation rate ? at sufficient accuracy, in order to unambiguously partition the energy decay into dissipation and spatial diffusion.  相似文献   

16.
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.  相似文献   

17.
Imtiaz Ahmad  卢志明  刘宇陆 《中国物理 B》2014,23(1):14701-014701
Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin’s model, and at the fourth location, close to She–Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.  相似文献   

18.
19.
20.
The emergence of anomalous fast decay regimes in homogeneous isotropic turbulence (HIT) decay is investigated via both theoretical analysis and eddy-damped quasi-normal Markovian simulations. The work provides new insight about a fundamental issue playing a role in HIT decay, namely the influence of non-standard shapes of the energy spectrum, in particular in the large energetic scale region. A detailed analysis of the kinetic energy spectrum E(k) and the non-linear energy transfer T(k) shows that anomalous decay regimes are associated with the relaxation of initial energy spectra which exhibit a bump at energetic scales. This feature induces an increase in the energy cascade rate, toward solutions with a smooth shape at the spectrum peak. Present results match observations reported in wind-tunnel experiments dealing with turbulence decay in the wake of grids and bluff bodies, including scaling laws for the dissipation parameter C?. They also indicate that the ratio between the initial eddy turnover time and the advection time determines of how fast anomalous regimes relax toward classical turbulence free-decay. This parameter should be used for consistent data comparison and it opens perspectives for the control of multiscale effects in industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号