首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate a strategy for benchmarking Reynolds-averaged Navier–Stokes (RANS) models by comparing moments extracted from averaged large eddy simulation (LES) data and those predicted directly by RANS. We consider the Besnard–Harlow–Rauenzahn (BHR) RANS approach designed for variable-density compressible flows, which has been previously applied to a wide variety of turbulence problems of interest. We focus on the model's ability to predict moments relevant to shock-driven material mixing. A prototypical inverse chevron shock tube configuration is considered, for which laboratory and previous LES studies are available for comparison and validation. We show that when appropriately initialized, BHR is capable of accurately capturing various characteristic integral measures of the flow; strategies for initialization are demonstrated while addressing sensitivity of BHR predictions to closure and initialization specifics, initial material interface conditions, and grid resolution. The reference simulations are performed using implicit LES based on the Los Alamos National Laboratory RAGE hydrodynamics code.  相似文献   

2.
The partially Reynolds-averaged Navier–Stokes (PANS) model can be used to simulate turbulent flows either as RANS, large eddy simulation (LES) or DNS. Its main parameter is fk whose physical meaning is the ratio of the modelled to the total turbulent kinetic energy. In RANS fk = 1, in DNS fk = 0 and in LES fk takes values between 0 and 1. Three different ways of prescribing fk are evaluated for decaying grid turbulence and fully developed channel flow: fk = 0.4, fk = k3/2 tot/? and, from its definition, fk = k/ktot where ktot is the sum of the modelled, k, and resolved, kres, turbulent kinetic energy. It is found that the fk = 0.4 gives the best results. In Girimaji and Wallin, a method was proposed to include the effect of the gradient of fk. This approach is used at RANS– LES interface in the present study. Four different interface models are evaluated in fully developed channel flow and embedded LES of channel flow: in both cases, PANS is used as a zonal model with fk = 1 in the unsteady RANS (URANS) region and fk = 0.4 in the LES region. In fully developed channel flow, the RANS– LES interface is parallel to the wall (horizontal) and in embedded LES, it is parallel to the inlet (vertical). The importance of the location of the horizontal interface in fully developed channel flow is also investigated. It is found that the location – and the choice of the treatment at the interface – may be critical at low Reynolds number or if the interface is placed too close to the wall. The reason is that the modelled turbulent shear stress at the interface is large and hence the relative strength of the resolved turbulence is small. In RANS, the turbulent viscosity – and consequently also the modelled Reynolds shear stress – is only weakly dependent on Reynolds number. It is found in the present work that it also applies in the URANS region.  相似文献   

3.
旋流和无旋突扩流动的LES和RANS模拟   总被引:2,自引:0,他引:2  
《工程热物理学报》2005,26(2):339-342
本文用smagorinsky-Lilly亚网格尺度湍流模型对旋流突扩流动(s=0.53)和无旋突扩流动(s=0)进行了大涡模拟(LES模拟),同时分别用压力应变项为IPCM和IPCM+Wall模型的雷诺应力方程模型进行了RANS模拟,和LES的统计结果对比。LES的统计结果与雷诺应力模型的模拟结果及实验对照表明,LES结果与实验结果的吻合比雷诺应力模型的好,说明所用的亚网格尺度湍流模型对旋流流动是适用的,LES结果是可信的。LES的瞬态结果揭示出在旋流作用下,流场中存在复杂的旋涡脱落现象。大涡结构极易破碎成小涡,而在无旋突扩流动的情况下,由于剪切的作用更强,大涡结构的尺寸和范围比旋流流动的要大。  相似文献   

4.
Diesel spray and combustion in a constant-volume engine cylinder was simulated by a large eddy simulation (LES) approach coupling with a multicomponent vapourisation (MCV) modelling. The simulation focused on the inclusion of the interaction between fuel spray and gas-phase turbulence flow at the sub-grid scale. The LES was based on the dynamic structure sub-grid model, and an additional source term was added to the filtered momentum equation to account for the effect of drop motion on the gas-phase turbulence. The multicomponent drop vapourisation modelling was based on the continuous thermodynamics approach using a gamma distribution to describe the complex diesel fuel composition and was capable of predicting a more complex drop vapourisation process. The effect of gas-phase turbulence flow on the fuel drop vapourisation process was evaluated through the solution of the gas-phase moments of the distribution in the present LES framework. A non-evaporative spray in a constant-volume engine cylinder was first simulated to examine the behaviours of LES, in comparison with a Reynolds-averaged Navier–Stokes (RANS) simulation based on the RNG k? model. More realistic diesel spray structures and improved agreement on liquid penetration length with the corresponding experimental data were predicted by the LES, using a grid resolution close to that of RANS. A more comprehensive simulation of diesel spray and combustion in cylindrical combustor was also performed. Predicted distributions of soot particles were compared to the experimental image, and improved agreement with the experimental data was also observed by using the present LES and MCV models. Consequently, results of the present models proved that improved overall performance of the fuel spray simulation can be achieved by the LES without a significant increase in the computational load compared to the RANS.  相似文献   

5.
Constrained large-eddy simulation (CLES) method has been recently developed by Chen and his colleagues for simulating attached and detached wall-bounded turbulent flows. In CLES, the whole domain is simulated using large-eddy simulation (LES) while a Reynolds stress constraint is enforced on the subgrid-scale (SGS) stress model for near wall regions. In this paper, CLES is used to simulate the separated flow in a channel with streamwise-periodic constrictions at Re = 10,595. The results of CLES are compared with those of Reynolds-averaged Navier-Stokes (RANS) method, LES, detached eddy simulation (DES) and previous LES results by Breuer et al. and Ziefle et al. Although a coarse grid is used, our results from the present LES, DES and CLES do not show large deviations from the reference results using much finer grid resolution. The comparison also shows that CLES performs the best among different turbulence models tested, demonstrating that the CLES provides an excellent alternative model for separated flows. Furthermore, the cross-comparisons among different CLES implementations have been carried out. Our simulation results are in favor of using the constraint from algebraic RANS model or solving the RANS model equations in the whole domain with a length scale modification according to the idea from DES.  相似文献   

6.
Stochastic and deterministic subgrid parameterisations are developed for the large eddy simulation (LES) of a turbulent channel flow with friction-velocity-based Reynolds number of Reτ = 950 and centreline-based Reynolds number of Re0 = 20,580. The subgrid model coefficients (eddy viscosities) are determined from the statistics of truncated reference direct numerical simulations (DNSs). The stochastic subgrid model consists of a mean-field shift, a drain eddy viscosity acting on the resolved field and a stochastic backscatter force of variance proportional to the backscatter eddy viscosity. The deterministic variant consists of a net eddy viscosity acting on the resolved field, which represents the net effect of the drain and backscatter. LES adopting the stochastic and deterministic models is shown to reproduce the time-averaged kinetic energy spectra of the DNS within the resolved scales.  相似文献   

7.
In this paper, advanced wall-modeled large eddy simulation (LES) techniques are used to predict conjugate heat transfer processes in turbulent channel flow. Thereby, the thermal energy transfer process involves an interaction of conduction within a solid body and convection from the solid surface by fluid motion. The approaches comprise a two-layer RANS–LES approach (zonal LES), a hybrid RANS–LES representative, the so-called improved delayed detached eddy simulation method (IDDES) and a non-equilibrium wall function model (WFLES), respectively. The results obtained are evaluated in comparison with direct numerical simulation (DNS) data and wall-resolved LES including thermal cases of large Reynolds numbers where DNS data are not available in the literature. It turns out that zonal LES, IDDES and WFLES are able to predict heat and fluid flow statistics along with wall shear stresses and Nusselt numbers accurately and that are physically consistent. Furthermore, it is found that IDDES, WFLES and zonal LES exhibit significantly lower computational costs than wall-resolved LES. Since IDDES and especially zonal LES require considerable extra work to generate numerical grids, this study indicates in particular that WFLES offers a promising near-wall modeling strategy for LES of conjugated heat transfer problems. Finally, an entropy generation analysis using the various models showed that the viscous entropy production is zero inside the solid region, peaks at the solid–fluid interface and decreases rapidly with increasing wall distance within the fluid region. Except inside the solid region, where steep temperature gradients lead to high (thermal) entropy generation rates, a similar behavior is monitored for the entropy generation by heat transfer process.  相似文献   

8.
The aim of this work is to propose a new model for turbulent flows, called the fractal model (FM), applicable both in a Reynolds averaged Navier–Stokes (RANS) and a large-eddy simulation (LES) formulation, with the ultimate goal of applying it to simulate turbulent combustion irrelevant of its mode (premixed or non-premixed). The model is able to turn itself off in the laminar zones of the flow, and in particular near walls. It is based on the fractal theory. It describes the physics of the smaller spatial scales and therefore represents a small-scales model.

FM describes the physics of the small scales of turbulence based on the phenomenological concept of vortex cascade and on the self-similar behaviour of turbulence in the inertial range. Such a model is used in each cell of a numerical calculation. A characteristic length Δ is associated to each cell, and the local energy u 3 Δ/Δ is distributed over a certain number of eddies, which depends on the local Reynolds number Re Δ. Each vortex of the cascade generates N c vortices; the recursive process of vortex generation terminates at the dissipative scale level, i.e. when the eddy Reynolds number is equal to one. FM is also able to estimate the volume fraction occupied by the dissipative fine structures of turbulence; this quantity is critical in reactive turbulent flows.

The physics of small scales is summarized by a turbulent ‘viscosity’ μt, to be added to the molecular one. μt is zero where the flow is laminar and, in particular, goes to zero at solid walls. Assuming μt to be isotropic, FM is applicable in a RANS formulation (IFM, isotropic fractal model). The model can be extended to the anisotropic case (AFM, anisotropic fractal model) and therefore used to close the transport equations in an LES approach. In the present paper, the model (IFM) is used in a RANS approach and is validated through a test case studied experimentally by Johnson and Bennett, and numerically (with LES) by Akselvoll and Moin. The results obtained are in good agreement both with the experimental and the numerical ones. Other tests are being performed.  相似文献   

9.
In this work, we propose a consistent turbulence-modeling framework for hybrid LES/RANS modeling. In this framework, the filtered and Reynolds averaged Navier–Stokes (RANS) equations are solved simultaneously in the whole domain on their respective meshes. Consistency between the two solutions is achieved in terms of velocity, pressure, and turbulent quantities through additional drift terms in the corresponding equations. This approach leads to clean conditions at the LES/RANS interfaces. Note that this general framework does not depend on the specific choice of LES and RANS models. A hybrid LES/RANS solver is developed within this framework and used to simulate the flow in a plane channel and that in a channel with periodic hills. The results demonstrate that the hybrid solver leads to significantly improved results with moderate computational overhead compared to traditional LES, making it a promising candidate for industrial flow simulations.  相似文献   

10.
This study is concerned with particle subgrid scale (SGS) modelling in large-eddy simulations (LESs) of particle-laden turbulence. Although many particle-laden LES studies have neglected the effect of the SGS on the particles, several particle SGS models have been proposed in the literature. In this research, the approximate deconvolution method (ADM) and the stochastic models of Fukagata et al. (Dynamics of Brownian particles in a turbulent channel flow, Heat Mass Transf. 40 (2004), 715–726) Shotorban and Mashayek (A stochastic model for particle motion in large-eddy simulation, J. Turbul. 7 (2006), 1–13) and Berrouk et al. (Stochastic modelling of inertial particle dispersion by subgrid motion for LES of high Reynolds number pipe flow, J. Turbul. 8 (2007), pp. 1–20) are analysed. The particle SGS models are assessed using both a priori and a posteriori simulations of inertial particles in a periodic box of decaying, homogeneous and isotropic turbulence with an initial Reynolds number of Reλ = 74. The model results are compared with particle statistics from a direct numerical simulation (DNS). Particles with a large range of Stokes numbers are tested using various filter sizes and stochastic model constant values. Simulations with and without gravity are performed to evaluate the ability of the models to account for the crossing trajectory and continuity effects. The results show that ADM improves results but is only capable of recovering a portion of the SGS turbulent kinetic energy. Conversely, the stochastic models are able to recover sufficient SGS energy, but show a large range of results dependent on the Stokes number and filter size. The stochastic models generally perform best at small Stokes numbers, but are unable to predict preferential concentration.  相似文献   

11.
Recent numerical studies of the restricted nonlinear (RNL) model have demonstrated its ability to reproduce important features of wall turbulence despite a severe reduction in the number of degrees of freedom. In these prior studies, the RNL model included full resolution of the viscous term. In this work, we extend the RNL model to arbitrarily high Reynolds numbers by developing a RNL large eddy simulation (LES) framework along with a method to systematically identify an appropriate streamwise wavenumber support based on spectral properties of wall turbulence. This method leads to a band-limited RNL–LES system which is successful in reproducing some of the most important statistical features captured in previous low to moderate Reynolds number simulations, e.g. the mean velocity and second-order moment profiles. The RNL–LES framework offers a new approach to understanding the connection between coherent structures and the momentum transfer mechanisms of wall turbulence at arbitrarily high Reynolds numbers, where resolution of the viscous terms can become computationally expensive even with the relatively low computational complexity afforded through the dynamical restriction of the RNL model.  相似文献   

12.
Large eddy simulations (LES) of the Sandia/Sydney swirl burners (SM1 and SMA1) and the Sandia/Darmstadt piloted jet diffusion flame (Flame D) are performed. These flames are part of the database of turbulent reacting flows widely considered as benchmark test cases for validating turbulent-combustion models. In the simulations presented in this paper, the subgrid scale (SGS) closure model adopted for turbulence-chemistry interactions is based on the transport filtered density function (FDF) model. In the FDF model, the transport equation for the joint probability density function (PDF) of scalars is solved. The main advantage of this model is that the filtered reaction rates can be exactly computed. However, the density field, computed directly from the FDF solver and needed in the hydrodynamic equations, is noisy and causes numerical instability. Two numerical approaches that yield a smooth density field are examined. The two methods are based on transport equations for specific sensible enthalpy (hs) and RT, where R is the gas constant and T is the temperature. Consistency of the two methods is assessed in a bluff-body configuration using Reynolds averaged Navier-Stokes (RANS) methodology in conjunction with the transported PDF method. It is observed that the hs method is superior to the RT method. Both methods are used in LES of the SM1 burner. In the near-field region, the hs method produces better predictions of temperature. However, in the far-field region, both methods show deviation from data. Simulations of the SMA1 burner and Flame D are also presented using the hs method. Some deficiencies are seen in the predictions of the SMA1 burner that may be related to the simple chemical kinetics model and mixing model used in the simulations. Simulations of Flame D show good agreement with data. These results indicate that, while further improvements to the methodology are needed, the LES/FDF method has the potential to accurately predict complex turbulent flames.  相似文献   

13.
ABSTRACT

The accuracy of turbulent swirl-stabilized flame simulation strongly depends on the choice of turbulence model. In this study, four 3D unsteady turbulence closures, including large eddy simulation, scale-adaptive simulation, and two detached eddy simulation variants, along with four RANS models, including RNG k??, SST k?ω, transition SST, and RSM, are examined for moderate- and high-swirl case studies. It is observed that the scale-adaptive simulation provides the most accurate results for almost all variables and both swirl conditions in the reactive flow. Only the 3D unsteady models predict the vortex breakdown bubble and flame attachment state correctly. However, based on our error analysis, the flow and composition fields predicted by the RANS models are in acceptable agreement with the experimental fields, especially the ones of transition SST when higher swirl number cases or minor species concentration are of interest. Moreover, it is concluded that the viscosity ratio criterion is a better measure of the local LES quality than the turbulent kinetic energy ratio, and the accuracy of a hybrid simulation may be much more dependent on the ability of the model to operate close to the RANS mode where the grid resolution is not sufficient for a resolving simulation than the fraction of the resolved kinetic energy. Finally, the propriety of the base (RANS) model of a DES for the application of interest is important, such that DES with realizable k?? outperforms the commonly used DES with SST k?ω model.  相似文献   

14.
A novel method for prescribing k and ω at inlets and RANS–LES interfaces in embedded LES is presented and evaluated. The method is based on the proposal by Hamba to use commutation terms at RANS–LES interfaces. Commutation terms are added to the k and ω equations in the region near the inlet (i.e. the RANS–LES interface). The proposed method can also be used when prescribing inlet values for k and ω in hybrid LES–RANS. The commutation terms are added in embedded LES at the LES side of the RANS–LES interface. The influence of the extent of the region where the commutation terms are added is investigated. It is found that it is most efficient to add commutation terms in only one cell layer adjacent to the interface; in this way, tuned constants are avoided. The commutation term in the ω equation is derived from transformation of the k and ? equations. When the commutation terms are used in only one cell layer, the commutation term in the k equation corresponds to a negative convection term. Hence, the commutation term can be omitted and a homogeneous Neumann inlet boundary condition can be used. The commutation term in the ω equation is retained. The novel method is evaluated for channel flow (Reτ = 8000), boundary layer flow (Reθ = 11, 000) and backward-facing step flow (ReH = 28, 000). Hybrid LES–RANS is used for the first two flows and embedded LES for the backward-facing step flow.  相似文献   

15.
The hypothesis of uncorrelated temperature (T) and vapor-fuel mass fraction (Yv), frequently made when modeling reaction rates using assumed-PDF models, is examined utilizing transitional databases from direct numerical simulation (DNS) of three-dimensional mixing-layers two-phase (TP) flows with evaporation. Because the databases do not contain chemical reaction, which would further correlate variables, finding here a correlation between T and Yv is sufficient for invalidating reaction rate modeling of the joint (TYv) probability distribution function (PDF) as a product of the marginal PDFs. The databases comprise four multicomponent fuels, two mass loadings and two free-stream gas temperatures. For comparison, databases for single-phase (SP) flows are also analyzed at two initial Reynolds numbers. The examination is conducted in the mixing layer excluding the free streams and in a more restricted part of the mixing layer constituting its core. The analysis is performed at the DNS and large eddy simulation (LES) scales, and subgrid scale (SGS). To obtain the LES database, the DNS database is filtered, and an evaluation of the examined correlation at the LES and SGS scales is made at two filter sizes. At the DNS scale, T and Yv are practically uncorrelated for SP flows, showing the weak influence of the perfect-gas equation of state, whereas for TP flows the correlation is strong and increases with mass loading indicating the powerful effect of the phase change. At the LES scale, the findings emulate those at the DNS scale. The fluctuations of the SGS scale are uncorrelated for SP flows, but the product of the marginal PDFs is different from the joint PDF. For TP flows, the fluctuations are correlated and the correlation increases with temperature, casting doubt on current assumed PDFs used to model chemistry in reacting sprays. These results are independent of filter size. The joint PDFs for TP and SP fluctuations are successfully modeled.  相似文献   

16.
A computational study of the HyShot II combustor performance   总被引:1,自引:0,他引:1  
Experimental and flight data for hypersonic air-breathing engines are both difficult and extremely expensive to obtain, motivating the use of computational models to enhance the understanding of the complex physics involved. Here, a comprehensive numerical study has been carried out for the HyShot II scramjet combustor. This study makes use of Reynolds Average Navier Stokes (RANS) based models and Large Eddy Simulation (LES) based models with semi-detailed reaction kinetics. In this investigation we focus on the underlying flow-mixing-combustion physics at different operating conditions tested in the High Enthalpy Shock Tunnel Göttingen (HEG). To account for the complex flow in the HEG facility a zonal approach is employed in which RANS is used to simulate the flow in the HEG nozzle and test-section, providing the necessary inflow boundary conditions for the combustor RANS and LES, being the focus of this analysis. Specifically, we here combine results from RANS and LES computations with data from the HEG experiments and the target HyShot II flight-tests at two different flight-altitudes (28 and 33 km). The LES model is observed to capture the experimental wall-pressure and heat-flux data very well for both the 33 and 28 km altitude cases, whereas the RANS model is only able to predict the wall-pressure and heat flux data for the 28 km altitude case. Based on the LES results, the flow at both altitudes is found to be unsteady, but with unsteady transitional flow features dominating the 33 km case. Moreover, these results show that the equivalence ratio is of key importance to the resulting flow, mixing and combustion physics, with richer mixtures being prone to transitional flow features. The LES results are also used to describe the flow physics in detail for both altitudes, and the key processes responsible for the transition between the two combustion modes observed.  相似文献   

17.
In hydraulic turbines, the tip-leakage vortex is responsible for flow instabilities and for promoting erosion due to cavitation. To better understand the tip vortex flow, Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation (LES) computations are carried out to simulate the flow around a NACA0009 blade including the gap between the tip and the wall. The main focus of the study is to understand the influence of the gap width on the development of the tip vortex, as for instance its trajectory. The RANS computations are performed using the open source solver OpenFOAM 2.1.0, two incidences and five gaps are considered. The LESs are achieved using the YALES2 solver for one incidence and two gaps.

The validation of the results is performed by comparisons with experimental data available downstream the trailing edge. The position of the vortex core, the mean velocity and the mean axial vorticity fields are compared at three different downstream locations. The results show that the mean behaviour of the tip vortex is well captured by the RANS and LES computations compared to the experiment. The LES results are also analysed to bring out the influence of the gap width on the development of the tip-leakage vortex. Finally, a law that matches the vortex trajectory from the leading edge to the mid-chord is proposed. Such a law can be helpful to determine, in case of cavitation, if the tip vortex will interact with the walls and cause erosion.  相似文献   

18.
Monte Carlo simulations of joint probability density function (PDF) approaches have been developed in the past largely with Reynolds averaged Navier Stokes (RANS) applications. Current interests are in the extension of PDF approaches to large eddy simulation (LES). As LES resolves accurately the large scales of turbulence in time, the Monte Carlo simulation and the flow field need to be tightly coupled. A tight coupling can be achieved if the consistency between the scalar field solution obtained via finite-volume (FV) methods and that from the stochastic solution of the PDF is ensured. For nonpremixed turbulent flames with two distinct streams, the local reactive mixture is described by the mixture fraction. A Eulerian Monte Carlo method is developed to achieve a second-order accuracy in the instantaneous filtered mixture fraction that is consistent with the corresponding FV. The performances of the proposed scheme are extensively evaluated using a one-dimensional model. Then, the scheme is applied to two cases with LES. The first one is a non-reacting mixing flow of two different fluids. The second case is the Sandia piloted turbulent flame D with a steady state flamelet model. Both results confirm the consistency of the proposed method to the level of filtered mixture fraction.  相似文献   

19.
Turbulent piloted Bunsen flames of stoichiometric methane–air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.  相似文献   

20.

The inner structure, and the physical behaviour of turbulent premixed flames are usually described, and classified by means of the regime diagram introduced by Borghi and Peters. Thereby properties related to both the flame and the (turbulent) flow are considered. In this work a diagram valid for all physical regimes, comprising suitable requirements for laminar simulations, direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaging based numerical simulation (RANS) is proposed. In particular the diagram describes essential situations within the validity limits of the “Borghi, Peters diagram” which physical phenomena are resolved by the simulation, and which have to be modelled. This information is used for systematic classification of various models by suggesting specific models that are appropriate depending on the regime and numerical resolution, and may provide guidance for numerical simulation methods and model development in turbulent premixed combustion. This might help users as a guideline in choosing appropriate models for a given device, and numerical effort available. The regime diagram suggested by Pitsch and Duchamp de Lageneste, which includes DNS and LES by explicitely accounting for the numerical related variable filterwidth, emerges here as one of the special two-dimensional cases possible. In contrast to the generalized regime diagram, their diagram does not include laminar simulations, and RANS based considerations, while transition between wrinkled and corrugated flamelets is not clearly established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号