首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-eddy simulations were carried out to study the effects of surface roughness on a plane wall-jet using the Lagrangian dynamic eddy-viscosity subgrid-scale model, at Re = 7500 (based on the jet bulk velocity and height). Results over both smooth and rough surfaces were validated by experimental data at the same Reynolds number. As the jet is injected into the still environment, large-scale rollers are generated in the shear layer between the high-momentum fluid of the jet and the surrounding and are convected downstream with the flow. To understand the extent to which the outer-layer structures modify the flow in the inner layer and the extent to which the effect of roughness spreads away from the wall, both instantaneous and mean flow fields were investigated. The results revealed that, for the Reynolds number and roughness height considered in this study, the effect of roughness is mostly confined to the near-wall region of the wall jet. There is no structural difference between the outer layer of the wall jet over the smooth and rough surfaces. Roughness does not affect the size of the outer-layer structures or the scaling of the profiles of Reynolds stresses in the outer layer. However, in the inner layer, roughness redistributes stresses from streamwise to wall-normal and spanwise directions toward isotropy. Contours of joint probability-density function of the streamwise and wall-normal velocity fluctuations at the bottom of the logarithmic region match those of the turbulent boundary layer at the same height; while the traces of the outer-layer structure were detected at the top of the logarithmic region, indicating that they do not affect the flow very close to the wall, but still modify a major portion of the inner layer. This modification must be taken into consideration when the inner layer of a wall jet is compared with the conventional turbulent boundary layer.  相似文献   

2.
We have carried out large-eddy simulations of an impinging jet with embedded azimuthal vortices, a model of the wake of a helicopter hovering in ground effect. The azimuthal vortices are generated by sinusoidal forcing of the velocity at the jet exit. They strengthen while they are advected towards the ground; when they are close to the solid surface, a layer of opposite-sign vorticity is formed at the wall, and lifted up to form a secondary vortex that interacts with the primary one. Regions of reversed flow are caused by the strong, localised, adverse pressure gradient. After this interaction, the primary vortices begin to decay, mostly due to the Reynolds shear stresses, which contribute to the turbulent diffusion of vorticity term in the budget of the phase-averaged azimuthal vorticity. This mechanism is extremely robust, and plays the most important role in the vortex decay even if no turbulence is initially present in the jet, or if the no-slip condition is removed. A three-dimensional instability also plays a role: removing it leads to slower decay. Our results also point out some challenges for turbulence models for the unsteady Reynolds-averaged Navier–Stokes equations.  相似文献   

3.
This study assesses the hypothesis of incomplete similarity for a plane turbulent wall jet on smooth and transitionally rough surfaces. Typically, a wall jet is considered to consist of two regions: an inner layer and an outer layer. The degree to which these two regions reach equilibrium with each other and interact to produce the property of self-similarity remains an open question. In this study, the analysis of the outer and inner regions indicates that each region is characterised by a half-width which exhibits its own distinct dependence on the streamwise distance x from the slot, and a single self-similar structure for both regions does not exist. More specifically, the inner and outer layers of the wall jet exhibit different scaling laws, which results in two self-similar mean velocity profiles, both of which retain a dependence on the slot height H. As such, incomplete similarity of the wall jet on smooth and transitionally rough surfaces is confirmed by this study. In addition, comparison of the experimental results for the transitionally rough surface with the smooth wall case indicates that the surface roughness modifies the development of the mean velocity profile in both the inner and outer regions, although the effect on the outer region is relatively small and close to the experimental uncertainty.  相似文献   

4.
Using the method of large-eddy simulation, the 3-dimensional turbulent jets in crossflow with stream-wise and transverse arrangements of nozzle are simulated, emphasizing on the dynamical process of generation and evolution of vortex structures in these flows. The results show that the basic vortex structures in literatures, such as the counter-rotating vortex pair, leading-edge vortices, lee-side vortices, hanging vortices, kidney vortices and anti-kidney vortices, are not independent physical substances, but local structures of the basic vortex structure of turbulent jets in crossflow-the 3-D stretching vortex rings originating from the orifice of the nozzle, which is discovered in this study. Therefore, the most important large-scale structures of turbulent jets in crossflow are unified to the 3-D vortex rings which stretch and twist in stream-wise and swing in transverse directions. We also found that the shedding frequencies of vortex rings are much lower than the one corresponding to the appearance of leading-edge and lee-side vortices in the turbulent jets.  相似文献   

5.
The resolution of a numerical scheme in both physical and Fourier spaces is one of the most important requirements to calculate turbulent flows. A conservative form of the interpolated differential operator (IDO-CF) scheme is a multi-moment Eulerian scheme in which point values and integrated average values are separately defined in one cell. Since the IDO-CF scheme using high-order interpolation functions is constructed with compact stencils, the boundary conditions are able to be treated as easy as the 2nd-order finite difference method (FDM). It is unique that the first-order spatial derivative of the point value is derived from the interpolation function with 4th-order accuracy and the volume averaged value is based on the exact finite volume formulation, so that the IDO-CF scheme has higher spectral resolution than conventional FDMs with 4th-order accuracy. The computational cost to calculate the first-order spatial derivative with non-uniform grid spacing is one-third of the 4th-order FDM. For a large-eddy simulation (LES), we use the coherent structure model (CSM) in which the model coefficient is locally obtained from a turbulent structure extracted from a second invariant of the velocity gradient tensor, and the model coefficient correctly satisfies asymptotic behaviors to walls.  相似文献   

6.
Subgrid-scale (SGS) parameterization and method for calculating filtered reaction rate are critical components of an accurate large-eddy simulation (LES) of turbulent flames. In this study, we integrate gradient-type structural SGS models with a partially stirred reactor approach by using detailed chemical kinetics to simulate a turbulent methane/hydrogen jet flame under moderate or intense low-oxygen dilution (MILD) conditions. The study examines two oxygen dilution levels. The framework is assessed through a systematic and comprehensive comparison of temperature, and mass fractions of major and minor species with experimental data and other reference simulation results. Overall, the statistics of the combustion field show excellent agreement with measurements at different axial locations, and a significant improvement compared to some previous simulations. It suggests that the proposed nonlinear LES framework is able to accurately model MILD combustion with reasonable computational cost.  相似文献   

7.
8.
平面撞击流偏斜振荡的实验研究与大涡模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
屠功毅  李伟锋  黄国峰  王辅臣 《物理学报》2013,62(8):84704-084704
采用实验和大涡模拟对喷嘴出口雷诺数(Re= U0 /μ, 其中 U0为出口平均速度, h为平面喷嘴出口狭缝高度, ρμ分别为流体的密度与动力黏度)为25–10000, 喷嘴间距 L为4h–40h范围内的平面撞击流偏斜振荡特性进行了研究. 通过对平面撞击流模拟和实验的结果进行比较, 验证了数值模拟的可靠性, 并对平面撞击流发生偏斜振荡的无因次参数(喷嘴间距 L/h与出口雷诺数 Re)范围进行划分, 重点考察了湍流平面撞击流的偏斜振荡周期及速度-压力变化特征. 研究结果表明大涡模拟能对平面撞击流的偏斜振荡进行有效预报; 当平面撞击流发生周期性偏斜振荡时, 特定点的压力与速度也发生周期性变化, 且变化周期与偏斜振荡周期一致, 偏斜振荡本质上是由速度-压力的周期性变化和转换引起的. 关键词: 平面撞击流 偏斜振荡 大涡模拟  相似文献   

9.
张冉  常青  李桦 《物理学报》2018,67(22):223401-223401
采用分子动力学模拟方法研究了气体分子Ar在光滑和粗糙Pt表面上的散射规律.提出了一种速度抽样方法,计算了不同温度条件下气体分子对光滑和粗糙表面的切向动量适应系数和吸附概率.结果显示:光滑表面条件下,气体分子的切向动量系数和吸附概率都随着温度的升高而降低;粗糙度对气体分子切向动量与表面的适应具有极大的促进作用,当粗糙度足够大时,切向动量适应系数的大小趋近于1.0,对温度的敏感性也逐渐降低.采用粒子束方法对气体分子在光滑和粗糙表面上的散射规律进行了定量分析.总结了散射过程中气体分子的典型轨迹和动量变化规律,将气体分子在光滑表面的散射分为两种类型:单次碰撞后散射和多次碰撞后散射.单次碰撞后散射的气体分子平均切向动量有所减小,而经过多次碰撞后散射的气体分子则倾向于保持原有的平均切向动量.对于粗糙表面,粗糙度的存在使气体分子与表面间的动量和能量适应更加充分,导致气体分子在较粗糙表面上散射后的平均切向动量大幅减小并接近于0,且气体分子在表面上经历的碰撞次数越多,其散射后的能量损失越严重.  相似文献   

10.
射流抛光多相紊流流场的数值模拟   总被引:1,自引:2,他引:1       下载免费PDF全文
 理论分析了射流抛光的紊动冲击射流特点,构建了射流抛光的垂直冲击射流模型和斜冲击射流模型。根据射流抛光冲击射流的特点,比较各种流体模型后,采用RNG k-e 模型应用于射流抛光模型的计算。利用计算流体力学理论的二阶迎风格式对抛光模型方程离散,用SIMPLEC数值计算方法对射流抛光过程的紊动冲击射流和离散相磨粒分布进行数值模拟,得到了射流抛光过程的连续流场和离散相磨粒与水溶液的耦合流场,同时计算出了抛光液射流在工件壁面上的压力、速度、紊动强度、剪切力分布和磨粒体积质量分布,分析了垂直射流抛光模型和斜冲击射流抛光模型紊流流场的特点。  相似文献   

11.
Large eddy simulations of turbulent radial and plane wall jets were performed at different Reynolds numbers using the Lagrangian dynamic eddy viscosity subgrid-scale model. The results were validated with experimental data available in the literature. Compared to the plane ones, the radial wall jets have an extra direction for expansion, which causes faster decay rates. Thus, the resulting pressure gradient distributions are different. However, the comparison of the results with the turbulent boundary layers under adverse and favourable pressure gradients reveals that these pressure gradients are not strong enough to cause any fundamental physical difference between plane and radial wall jets. In both cases, the local Reynolds number is an important determining factor in characterisation of the flow. The joint probability density function analysis shows that the local Reynolds number determines the level of intrusion of the outer layer into the inner layer: the lower the local Reynolds number, the stronger is the interaction of the inner and outer layers. These results can be used to clarify the scatter of the reported log-law constants in the literature.  相似文献   

12.
射流速度和冲击角度会影响冲击射流的动力特性,对射流抛光的材料去除面型和材料去除量有重要的影响。对冲击射流壁面流场结构进行了分析,建立了工件壁面上的速度、压力与冲击角度、射流出口速度的数学关系。在分析理想平面的基础上,重点分析了射流速度和冲击角度的变化对存在表面瑕疵的工件材料去除量的影响。结果表明:对于理想平面,当冲击角度大约为30°时,可得到理想的高斯型面型分布;对于存在瑕疵的工件表面,在小角度冲击时更有利于材料的去除;工件材料的去除量均随着射流速度的增大而增大。  相似文献   

13.
Large eddy simulations (LESs) of turbulent horizontal buoyant jets are carried out using a high-order numerical method and Sigma subgrid-scale (SGS) eddy-viscosity model, for a number of different Reynolds (Re) and Richardson (Ri) numbers. Simulations at previous experimental flow conditions (Re = 3200, 24, 000 and Ri = 0, 0.01) are carried out first, and the results are found to be qualitatively and quantitatively similar to the experimental results, thus validating the numerical methodology. The effect of varying Ri (values 2×10?4, 0.001, 0.005, and 0.01) and Re (3200 and 24, 000) is studied next. The presence of stable stratification on one side and unstable stratification on the other side of the jet centreline leads to an asymmetric development of horizontal buoyant jets. It is found that this asymmetry, the total radial spread and the vertical deflection are significantly affected by Ri, while Re affects only the radial asymmetry. The need for developing improved integral models, accounting for this asymmetry, is pointed out. Turbulent production and dissipation rates are investigated, and are found to be symmetric in the horizontal plane, but asymmetric in the mid-vertical plane. A previously proposed model, for correlation between the vertical component of the fluctuating scalar flux vector and the vertical cross-correlation component of the Reynolds tensor, is modified based on the current LES results. Instantaneous scalar and velocity fields are analysed to reveal the structure of horizontal buoyant jets. Similar to the developed turbulent jet, the flow close to the nozzle too is found to be markedly different in the stable and unstable stratification regions. Persistent coherent vortex rings are found in the stable stratification region, while intermittent breakdown of vortex rings into small-scale structures is observed in the unstable stratification region. Similarities and differences between the flow structures in the horizontal buoyant jet configuration and those in the jet in crossflow configuration are discussed. Finally, a dynamic mode decomposition analysis is carried out, which indicates that the flow in the unstable stratification region is more energetic and prone to instabilities, as compared to the flow in the stable stratification region.  相似文献   

14.
理论分析了射流抛光的紊动冲击射流特点,构建了射流抛光的垂直冲击射流模型和斜冲击射流模型。根据射流抛光冲击射流的特点,比较各种流体模型后,采用RNG k-e 模型应用于射流抛光模型的计算。利用计算流体力学理论的二阶迎风格式对抛光模型方程离散,用SIMPLEC数值计算方法对射流抛光过程的紊动冲击射流和离散相磨粒分布进行数值模拟,得到了射流抛光过程的连续流场和离散相磨粒与水溶液的耦合流场,同时计算出了抛光液射流在工件壁面上的压力、速度、紊动强度、剪切力分布和磨粒体积质量分布,分析了垂直射流抛光模型和斜冲击射流抛光模型紊流流场的特点。  相似文献   

15.
董琪琪  胡海豹  陈少强  何强  鲍路瑶 《物理学报》2018,67(5):54702-054702
利用三维分子动力学模拟方法,研究了纳米尺度水滴撞击冷壁面的结冰过程.数值模拟中,统计系统采用微正则系综,势能函数选用TIP4P/ice模型,温度校正使用速度定标法,牛顿运动方程的求解采用文莱特算法,水滴内部结冰过程则通过统计垂直方向水分子温度分布来判定.研究发现,当冷壁面温度降低时,水滴完全结冰的时间减小,但水滴降至壁面温度的时间却增大;同时随着壁面亲水性降低,水滴内部热传递速度减慢(尤其是冷壁面与水滴底端分子层间),水滴内部温度趋于均匀,但水滴完全结冰时间延长.  相似文献   

16.
The role of a split injection in the mixture formation and combustion characteristics of a diesel spray in an engine-like condition is investigated. We use large-eddy simulations with finite rate chemistry in order to identify the main controlling mechanism that can potentially improve the mixture quality and reduces the combustion emissions. It is shown that the primary effect of the split injection is the reduction of the mass of the fuel-rich region where soot precursors can form.Furthermore, we investigate the interaction between different injections and explain the effects of the first injection on the mixing and combustion of the second injection. Results show that the penetration of the second injection is faster than that of the first injection. More importantly, it is shown that the ignition delay time of the second injection is much shorter than that of the first injection. This is due to the residual effects of the ignition of the first injection which increases the local temperature and maintains a certain level of combustion some intermediates or radical which in turn boosts the ignition of the second injection.  相似文献   

17.
In this work, we have investigated the adhesive behaviour of elastic films in contact with solid substrates, which are bounded by mound surface roughness. This type of roughness is described by the rms roughness amplitude w, the average mound separation Λ, and the system correlation length ζ. It is shown that both lateral roughness parameters Λ and ζ strongly influence adhesive characteristics. Indeed, with increasing elastic film modulus E, film adhesion is only possible for sufficiently large mound separations Λ. Moreover, the critical elastic modulus Ec (for which spontaneous film decohesion takes place for E>Ec) is shown to increase fast with increasing mound separation Λ when Λ?ζ, while as a function of the system correlation length ζ it increases relatively fast when ζ?Λ.  相似文献   

18.
为了给出射流抛光系统的优化设计参数,从理论上分析了冲击射流流场的结构特点,建立了工件壁面上的速度、压强与冲击角度、射流出口速度以及冲击距离的数学关系。就不同参数对射流流场分布的影响进行了定量计算,结果表明,工件壁面上的压强和速度与出口压强和速度成线性正比关系。当冲击距离大于9.6d(d为射流喷口的直径)时,工件壁面压强和速度随冲击距离的增大而减小,冲击距离增加到15d时,壁面压强最大值减小到0.54p0(p0为射流出口处的压强)。工件壁面压强和速度随冲击角度的减小而减小,当入射角为90°、60°和45°时,分别得到壁面压强最大值ps=0.95 p0,0.74p0,0.475p0,上游速度最大值um02=0.96u0,0.8u0,0.67u0(u0为射流出口处的速度)。  相似文献   

19.
Use of large-eddy simulation (LES) data in electromagnetic wave propagation modeling is not very common because of the high computational cost involved. A new phase-screen method is proposed to model radio wave propagation, in the atmospheric turbulence, using the resolved scale refractivity obtained from LES. The proposed method offers the same level of accuracy, as the one already existing in the literature, at much cheaper cost.  相似文献   

20.
张程宾  许兆林  陈永平 《物理学报》2014,63(21):214706-214706
为研究粗糙表面对纳尺度流体流动和传热及其流固界面速度滑移与温度阶跃的影响,本文建立了粗糙纳通道内流体流动和传热耦合过程的分子动力学模型,模拟研究了粗糙通道内流体的微观结构、速度和温度分布、速度滑移和温度阶跃并与光滑通道进行了比较,并分析了固液相互作用强度和壁面刚度对界面处速度滑移和温度阶跃的影响规律. 研究结果表明,在外力作用下,纳通道主流区域的速度分布呈抛物线分布,由于流体流动导致的黏性耗散使得纳通道内的温度分布呈四次方分布. 并且,在固体壁面处存在速度滑移与温度阶跃. 表面粗糙度的存在使得流体剪切流动产生了额外的黏性耗散,使得粗糙纳通道内的流体速度水平小于光滑通道,温度水平高于光滑通道,并且粗糙表面的速度滑移与温度阶跃均小于光滑通道. 另外,固液相互作用强度的增大和壁面刚度的减小均可导致界面处速度滑移和温度阶跃程度降低. 关键词: 速度滑移 温度阶跃 流固界面 粗糙度  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号