首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate a strategy for benchmarking Reynolds-averaged Navier–Stokes (RANS) models by comparing moments extracted from averaged large eddy simulation (LES) data and those predicted directly by RANS. We consider the Besnard–Harlow–Rauenzahn (BHR) RANS approach designed for variable-density compressible flows, which has been previously applied to a wide variety of turbulence problems of interest. We focus on the model's ability to predict moments relevant to shock-driven material mixing. A prototypical inverse chevron shock tube configuration is considered, for which laboratory and previous LES studies are available for comparison and validation. We show that when appropriately initialized, BHR is capable of accurately capturing various characteristic integral measures of the flow; strategies for initialization are demonstrated while addressing sensitivity of BHR predictions to closure and initialization specifics, initial material interface conditions, and grid resolution. The reference simulations are performed using implicit LES based on the Los Alamos National Laboratory RAGE hydrodynamics code.  相似文献   

2.
This study is concerned with particle subgrid scale (SGS) modelling in large-eddy simulations (LESs) of particle-laden turbulence. Although many particle-laden LES studies have neglected the effect of the SGS on the particles, several particle SGS models have been proposed in the literature. In this research, the approximate deconvolution method (ADM) and the stochastic models of Fukagata et al. (Dynamics of Brownian particles in a turbulent channel flow, Heat Mass Transf. 40 (2004), 715–726) Shotorban and Mashayek (A stochastic model for particle motion in large-eddy simulation, J. Turbul. 7 (2006), 1–13) and Berrouk et al. (Stochastic modelling of inertial particle dispersion by subgrid motion for LES of high Reynolds number pipe flow, J. Turbul. 8 (2007), pp. 1–20) are analysed. The particle SGS models are assessed using both a priori and a posteriori simulations of inertial particles in a periodic box of decaying, homogeneous and isotropic turbulence with an initial Reynolds number of Reλ = 74. The model results are compared with particle statistics from a direct numerical simulation (DNS). Particles with a large range of Stokes numbers are tested using various filter sizes and stochastic model constant values. Simulations with and without gravity are performed to evaluate the ability of the models to account for the crossing trajectory and continuity effects. The results show that ADM improves results but is only capable of recovering a portion of the SGS turbulent kinetic energy. Conversely, the stochastic models are able to recover sufficient SGS energy, but show a large range of results dependent on the Stokes number and filter size. The stochastic models generally perform best at small Stokes numbers, but are unable to predict preferential concentration.  相似文献   

3.
A turbulent combustion model, Conditional Source-term Estimation (CSE) is applied to a non-premixed turbulent jet methane flame. The conditional chemical source terms are determined on the basis of first order closure and the conditional averaged species concentrations are obtained by inverting an integral equation. The Tikhonov method is implemented for regularisation. Detailed chemistry is tabulated using the trajectory generated low-dimensional manifold method. Radiation due to the gaseous species is included. Reynolds Averaged Navier–Stokes calculations are performed using two different turbulence models. The objectives of the paper are (i) assessment of the impact of the main numerical parameters in CSE and (ii) comparison of the CSE numerical predictions with available experimental data and results from previous simulations for the selected flame. The number of CSE domains and the number of points in each CSE domain are shown to have a significant impact on the results if not selected appropriately. The present CSE calculations always converge to unique and stable predictions. The corrected k–ε model yields mixture fraction profiles in good agreement with the experimental data values for axial locations in the first half of the flame. Farther downstream, the RNG k–ε model performs better. Overall, the current predictions for the mixture fraction are in good agreement with the experimental data. The predicted temperatures using CSE and the k–ε turbulence model with a modified value of Cε1 = 1.47 are found to be in very good agreement with the experimental data. Further, the current CSE results are of comparable quality with previous simulations using the flamelet model and conditional moment closure. Future work may include further investigation on optimal determination of the regularisation parameter and alternative regularisation techniques, soot modelling within the CSE formulation, and improved formulation of radiation.  相似文献   

4.
ABSTRACT

We develop a theory for the cascade mixing terms in a moment closure approach to binary active scalar mixing in variable-density turbulence. To address the variable-density complications we apply, as a principle and constraint, the conservation of the probability density function (PDF) through a Fokker–Planck equation with bounded sample space whose attractor is the beta PDF with skewness. Mixing is related to a single-point PDF as a realisability principle to provide mathematically rigorous expressions for the small scale statistics in terms of largescale moments. The problem of the unknown small-scale mixing is replaced with the determination of the drift and diffusion terms of a Fokker–Planck equation in a beta-PDF-convergent stochastic process. We find that realisability of a beta-convergent process requires the mixing time-scale ratio, taken as a constant in passive scalar mixing, to be a function of the mean mass fraction, mean fluid density, the Atwood number, the density-volume correlation and moments of the density field. We develop and compare the new model with direct numerical simulations data of non-stationary homogeneous variable-density turbulence.  相似文献   

5.
Optimal utilization of computational resources mandates spatio-temporal variation in resolution for computing complex engineering flows. Closure modeling in regions bridging between different resolutions is rendered difficult due to changing interactions between resolved and unresolved fields. We develop a closure model for the bridging region based on energy conservation principles. Then we proceed to provide a proof of concept in decaying isotropic turbulence with temporally varying resolution. The simplicity of the flow permits a thorough examination of various aspects of the proposed closure not feasible in more complex flows. The results demonstrate the potential promise of the approach, but more validation studies need to be performed.While the present development is in the context of partially averaged Navier–Stokes (PANS) method, the closure principle should apply for other variable-resolution (VR) approaches.  相似文献   

6.
Mean-field plasma edge transport codes such as SOLPS-ITER heavily rely on ad-hoc radial diffusion coefficients to approximately model anomalous transport. Such coefficients are experimentally determined and vary between different machines, and also depend on the operational regime and plasma location within the same device. Therefore, to match experimental data the modeller is required to manually tune several free parameters in expensive simulations, and the code's predictive capabilities are significantly downgraded. As a solution, a new model has been developed for SOLPS-ITER, solving an additional transport equation for the turbulent kinetic energy k, derived by consistently time-averaging the Braginskii equations, and including a diffusive closure for the anomalous particle flux. This closure model relates the anomalous diffusion coefficient to the local k value. The resulting equation structure and its closure are inspired by TOKAM2D isothermal interchange turbulence simulation results. Within this model, fewer and hopefully more universal free parameters are retained, thus improving the code's predictive capabilities. The new model has been tested on a COMPASS case for which upstream plasma profiles were available. Experimental data and a reference solution, obtained by matching the profiles through manual tuning of radial diffusivities, have been used to estimate the parameters of our new transport model. A ballooned particle diffusivity profile is retrieved by the new radial transport model, thanks to the proposed interchange drive. The obtained upstream profiles qualitatively agree with the experiment and prove the new model is a promising first attempt to be further refined.  相似文献   

7.
徐一  周力行 《计算物理》2000,17(6):633-640
用颗粒运动的拉氏分析和PDF方法,改进了颗粒相的二阶矩模型。由拉氏两相运动的随机微分方程出发,采用随机过程分析和信号分析法得到湍流两相流动的PDF输运方程,双流体模型方程和两相脉动速度相关的基本模式的封闭式,和用其它方法导出的方程与封闭式的结果一致,对封闭式作了重要的改进,在分析颗粒轨道上的流体湍流作用时间时,全面地引入拉氏分析的轨道穿越效应、惯性效应、连续效应和湍流的各向异性。  相似文献   

8.
In deducing the consequences of the Direct Interaction Approximation, Kraichnan was sometimes led to consider the properties of special classes of nonlinear interactions in degenerate triads in which one wavevector is very small. Such interactions can be described by simplified models closely related to elementary closures for homogeneous isotropic turbulence such as the Heisenberg and Leith models. These connections can be exploited to derive considerably improved versions of the Heisenberg and Leith models that are only slightly more complicated analytically. This paper applies this approach to derive some new simplified closure models for passive scalar advection and investigates the consistency of these models with fundamental properties of scalar turbulence. Whereas some properties, such as the existence of the Kolmogorov–Obukhov range and the existence of thermal equilibrium ensembles, follow the velocity case closely, phenomena special to the scalar case arise when the diffusive and viscous effects become important at different scales of motion. These include the Batchelor and Batchelor–Howells–Townsend ranges pertaining, respectively, to high and low molecular Schmidt number. We also consider the spectrum in the diffusive range that follows the Batchelor range. We conclude that improved elementary models can be made consistent with many nontrivial properties of scalar turbulence, but that such models have unavoidable limitations.  相似文献   

9.
One of the key issues of recent research on the dispersion inside complex urban environments is the ability to predict individual exposure (maximum dosages) of an airborne material which is released continuously from a point source. The present work addresses the question whether the computational fluid dynamics (CFD)–Reynolds-averaged Navier–Stokes (RANS) methodology can be used to predict individual exposure for various exposure times. This is feasible by providing the two RANS concentration moments (mean and variance) and a turbulent time scale to a deterministic model. The whole effort is focused on the prediction of individual exposure inside a complex real urban area. The capabilities of the proposed methodology are validated against wind-tunnel data (CUTE experiment). The present simulations were performed ‘blindly’, i.e. the modeller had limited information for the inlet boundary conditions and the results were kept unknown until the end of the COST Action ES1006. Thus, a high uncertainty of the results was expected. The general performance of the methodology due to this ‘blind’ strategy is good. The validation metrics fulfil the acceptance criteria. The effect of the grid and the turbulence model on the model performance is examined.  相似文献   

10.
A new approach to generate initial conditions for RANS simulations of Rayleigh–Taylor (RT) turbulence is presented. The strategy is to provide profiles of turbulent model variables when it is suitable for the turbulence model to be started, and then use these profiles for the turbulence model initialization. The generation of turbulence model variable profiles is achieved with a two-step process. In the first step, a nonlinear modal model assuming small amplitude initial perturbations, incompressible and inviscid fluids is used to track the growth of modes that exist in a given initial perturbation spectrum, and also modes generated by mode interactions. The amplitude development of each mode represents the penetration distance of the light fluid into the heavy fluid (bubble penetration), for a given mode perturbation. The penetration distance of heavy fluid into the light fluid (spike penetration), for a given mode perturbation, is inferred from the bubble's height by an empirical relation valid for small initial amplitudes, and established by DNS simulations that depend on a nondimensional time, and the density contrast (Atwood number). It is hypothesized that the bubble front position of the RT mixing layer can be approximated by the largest penetration distance among all existing modes. The spike front position is approximated in the same fashion. The nonlinear model is evaluated by comparing the bubble front height evolution predicted by the model against the bubble front height predicted by an incompressible implicit large eddy simulations (ILES) code. Comparisons of results for “top-hat” and two-band initial perturbation spectra at Atwood numbers, AT =0.3 and AT =0.5 for the former, and AT =0.01 and AT =0.5 for the latter, show reasonable agreement. In the second step, the bubble and spike front positions, their derived velocities, and simplified profiles of the mixture fraction distribution of each fluid between the bubble and spike fronts are used with a two-fluid approximation to derive profiles for the turbulence model variables. When initialized with modal model profiles at start time τ0, (i.e., the time when the turbulence model variable profiles are inferred from the modal model results), the RANS simulations provide at all times τ>τ0 profiles that show good agreement with ILES simulations. The procedure for determining the time at which the RANS model should be started is a representative use, other parameters can be used depending on the application. In this paper, for the purpose of demonstration of the full strategy, τ0 is taken as the time at which the mixing layer growth rate parameter α has reached its asymptotic value in the corresponding ILES simulation.  相似文献   

11.
A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.  相似文献   

12.
We characterise the properties of unstably stratified homogeneous turbulence by means of high-resolution direct numerical simulations and a two-point statistical spectral model based on a quasi-normal closure proposed by Burlot et al. Both approaches agree very well regarding the evolution of one- and two-point turbulent statistics, showing that the model is valid at even higher Reynolds numbers than previously considered. From a parametric study with different initial conditions, we confirm that the energy distribution at large scale influences strongly the late time dynamics of the flow. In particular, we assess the existence of backscatter transfer of energy, and evaluate its role in the growth rate of several turbulent quantities. Moreover, thanks to the statistical model, we analyse the scale-by-scale anisotropy of the flow through the decomposition of turbulent spectra in terms of directional anisotropy and polarisation anisotropy, for a refined characterisation of the structure of the flow which is strongly anisotropic in the large scales. This also allows us to study how isotropy is restored in the inertial scales.  相似文献   

13.
Alpha-type regularisation models provide theoretically attractive subgrid-scale closure approximations for large-eddy simulations of turbulent flow. We adopt the a-priori testing strategy to study three different alpha regularisation models, namely the Navier–Stokes-α model, the Leray-α model, and the Clark-α model. Specifically, we use high-resolution direct numerical simulation data of homogeneous isotropic turbulence to compute the mean subgrid-scale dissipation, the spatial distribution of the subgrid-scale dissipation, and the spatial distribution of elements of the subgrid-scale stress tensor. This is done for different filter parameters and different large-eddy simulation grid resolutions. Predictions of the three regularisation models are compared to the exact values of the subgrid-scale stress tensor, as defined in the filtered Navier–Stokes equations. The potential of the three regularisation models to provide good approximations is quantified using spatial correlation coefficients. Whereas the Clark-α model exhibits the highest spatial correlation coefficients for the subgrid-scale dissipation and the subgrid-scale stress tensor elements, the Leray-α model provides lower correlation coefficients, and the Navier–Stokes-α model exhibits the lowest correlation coefficients of the three models. Our results indicate the presence of an optimal choice of the filter parameter α depending on the large-eddy simulation grid resolution.  相似文献   

14.
The statistical behaviour and closure of sub-grid scalar fluxes in the context of turbulent premixed combustion have been assessed based on an a priori analysis of a detailed chemistry Direct Numerical Simulation (DNS) database consisting of three hydrogen-air flames spanning the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) regimes of premixed turbulent combustion. The sub-grid scalar fluxes have been extracted by explicit filtering of DNS data. It has been found that the conventional gradient hypothesis model is not appropriate for the closure of sub-grid scalar flux for any scalar in the context of a multispecies system. However, the predictions of the conventional gradient hypothesis exhibit a greater level of qualitative agreement with DNS data for the flame representing the BRZ regime. The aforementioned behaviour has been analysed in terms of the properties of the invariants of the anisotropy tensor in the Lumley triangle. The flames in the CF and TRZ regimes are characterised by a pronounced two-dimensional anisotropy due to strong heat release whereas a three-dimensional and more isotropic behaviour is observed for the flame located in the BRZ regime. Two sub-grid scalar flux models which are capable of predicting counter-gradient transport have been considered for a priori DNS assessment of multispecies systems and have been analysed in terms of both qualitative and quantitative agreements. By combining the latter two sub-grid scalar flux closures, a new modelling strategy is suggested where one model is responsible for properly predicting the conditional mean accurately and the other model is responsible for the correlations between model and unclosed term. Detailed physical explanations for the observed behaviour and an assessment of existing modelling assumptions have been provided. Finally, the classical Bray–Moss–Libby theory for the scalar flux closure has been extended to address multispecies transport in the context of large eddy simulations.  相似文献   

15.
A finite volume large eddy simulation–conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane–air flame with Leeff = 0.99 and a lean hydrogen–air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane–air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.  相似文献   

16.
Decaying homogeneous isotropic turbulence with an imposed mean scalar gradient is investigated numerically, thanks to a specific eddy-damped quasi-normal Markovian closure developed recently for passive scalar mixing in homogeneous anisotropic turbulence (BGC). The present modelling is compared successfully with recent direct numerical simulations and other models, for both very large and small Prandtl numbers. First, scalings for the cospectrum and scalar variance spectrum in the inertial range are recovered analytically and numerically. Then, at large Reynolds numbers, the decay and growth laws for the scalar variance and mixed velocity–scalar correlations, respectively, derived in BGC, are shown numerically to remain valid when the Prandtl number strongly departs from unity. Afterwards, the normalised correlation ρwθ is found to decrease in magnitude at a fixed Reynolds number when Pr either increases or decreases, in agreement with earlier predictions. Finally, the small scales return to isotropy of the scalar second-order moments is found to depend not only on the Reynolds number, but also on the Prandtl number.  相似文献   

17.
In this paper, direct numerical simulations (DNS) are presented to understand the effects of the inlet conditions on the turbulent energy decay rate of isotropic turbulence. A perfect control of the inlet conditions cannot be achieved in realistic simulations reproducing the effects of a solid grid, which, on the other hand, is possible by adding to a uniform inlet velocity U 0 analytical anisotropic single- or multiple-scale velocity disturbances. The single-scale simulations with different disturbances with a wave number κ show a scaling of the turbulent energy q versus x 1/M with M=2π/κ. The energy decay rate m for multiple-scale disturbances is decreased compared to the case with single-scale disturbances. The transition from anisotropic to isotropic turbulence is analysed through the evolution of the statistics, in particular, those linked to the flow structures. Flow visualisations of the vorticity field and joint of the velocity components at different distances from the inlet illuminate the reasons for the differences between single- and multiple-scale disturbances. The reduction of m, for the latter, indicates the way to generate isotropic turbulence at high microscale R λ. Simulations at different rates of solid-body rotation aligned with the streamwise direction were also performed for the flows with multiple- and single-scale disturbances. Variations of the rotation rate Ω allow to investigate the modifications of the vortical structures for single-scale disturbances. At N Ω=2ΩL/U 0=10, the comparison between single- and multiple-scale disturbances shows a further increase of R λ in the latter flow. One-dimensional energy spectra at different distances from the inlet indicate when the effects of the inlet disturbances disappear. Good agreement, in the inertial and in the exponential decay ranges, between the present spectra and those from the DNS of forced isotropic turbulence demonstrates the quality of the numerical method used.  相似文献   

18.
While reasonably accurate in simulating gas phase combustion in biomass grate furnaces, CFD tools based on simple turbulence–chemistry interaction models and global reaction mechanisms have been shown to lack in reliability regarding the prediction of NOx formation. Coupling detailed NOx reaction kinetics with advanced turbulence–chemistry interaction models is a promising alternative, yet computationally inefficient for engineering purposes. In the present work, a model is proposed to overcome these difficulties. The model is based on the Realizable k–? model for turbulence, Eddy Dissipation Concept for turbulence–chemistry interaction and the HK97 reaction mechanism. The assessment of the sub-models in terms of accuracy and computational effort was carried out on three laboratory-scale turbulent jet flames in comparison with the experimental data. Without taking NOx formation into account, the accuracy of turbulence modelling and turbulence–chemistry interaction modelling was systematically examined on Sandia Flame D and Sandia CO/H2/N2 Flame B to support the choice of the associated models. As revealed by the Large Eddy Simulations of the former flame, the shortcomings of turbulence modelling by the Reynolds averaged Navier–Stokes (RANS) approach considerably influence the prediction of the mixing-dominated combustion process. This reduced the sensitivity of the RANS results to the variations of turbulence–chemistry interaction models and combustion kinetics. Issues related to the NOx formation with a focus on fuel bound nitrogen sources were investigated on a NH3-doped syngas flame. The experimentally observed trend in NOx yield from NH3 was correctly reproduced by HK97, whereas the replacement of its combustion subset by that of a detailed reaction scheme led to a more accurate agreement, but at increased computational costs. Moreover, based on results of simulations with HK97, the main features of the local course of the NOx formation processes were identified by a detailed analysis of the interactions between the nitrogen chemistry and the underlying flow field.  相似文献   

19.
Clustering (or preferential concentration) of inertial particles suspended in a homogeneous, isotropic turbulent flow is strongly influenced by the smallest scales of the turbulence. In particle-laden large-eddy simulations (LES) of turbulence, these small scales are not captured by the grid and hence their effect on particle motion needs to be modelled. In this paper, we use a subgrid model based on kinematic simulations of turbulence (Kinematic Simulation based SubGrid Model or KSSGM), for the first time in the context of predicting the clustering and the relative velocity statistics of inertial particles. This initial study focuses on the special case of inertial particles in the absence of gravitational settling. We show that the KSSGM gives excellent predictions for clustering in a priori tests for inertial particles with St ≥ 2.0, where St is the Stokes number, defined as the ratio of the particle response time to the Kolmogorov time-scale. To the best of our knowledge, the KSSGM represents the first model that has been shown to capture the effect of the subgrid scales on inertial particle clustering for St ≥ 2.0. We also show that the mean inward radial relative velocity between inertial particles (?wr?(?), which enters into the formula for the collision kernel) is accurately predicted by the KSSGM for all St. We explain why the model captures clustering at higher St?but not for lower St?, and provide new insights into the key statistical parameters of turbulence that a subgrid model would have to describe, in order to accurately predict clustering of low-St?particles in an LES.  相似文献   

20.
A series of large-eddy simulations of a turbulent asymptotic suction boundary layer (TASBL) was performed in a periodic domain, on which uniform suction was applied over a flat plate. Three Reynolds numbers (defined as ratio of free-stream and suction velocity) of Re = 333, 400 and 500 and a variety of domain sizes were considered in temporal simulations in order to investigate the turbulence statistics, the importance of the computational domain size, the arising flow structures as well as temporal development length required to achieve the asymptotic state. The effect of these two important parameters was assessed in terms of their influence on integral quantities, mean velocity, Reynolds stresses, higher order statistics, amplitude modulation and spectral maps. While the near-wall region up to the buffer region appears to scale irrespective of Re and domain size, the parameters of the logarithmic law (i.e. von Kármán and additive coefficient) decrease with increasing Re, while the wake strength decreases with increasing spanwise domain size and vanishes entirely once the spanwise domain size exceeds approximately two boundary-layer thicknesses irrespective of Re. The wake strength also reduces with increasing simulation time. The asymptotic state of the TASBL is characterised by surprisingly large friction Reynolds numbers and inherits features of wall turbulence at numerically high Re. Compared to a turbulent boundary layer (TBL) or a channel flow without suction, the components of the Reynolds-stress tensor are overall reduced, but exhibit a logarithmic increase with decreasing suction rates, i.e. increasing Re. At the same time, the anisotropy is increased compared to canonical wall-bounded flows without suction. The reduced amplitudes in turbulence quantities are discussed in light of the amplitude modulation due to the weakened larger outer structures. The inner peak in the spectral maps is shifted to higher wavelength and the strength of the outer peak is much less than for TBLs. An additional spatial simulation was performed, in order to relate the simulation results to wind tunnel experiments, which – in accordance with the results from the temporal simulation – indicate that a truly TASBL is practically impossible to realise in a wind tunnel. Our unique data set agrees qualitatively with existing literature results for both numerical and experimental studies, and at the same time sheds light on the fact why the asymptotic state could not be established in a wind tunnel experiment, viz. because experimental studies resemble our simulation results from too small simulation boxes or insufficient development times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号