首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
报道了以7-甲(乙)基靛红(1a,1b)为原料,对其1-烃基化得1-烃基-7-甲(乙)基靛红(2a1-2a5,2b1-2b5)。1a,1b,2a1-2a5,2b1-2b5与邻苯二胺在冰醋酸为溶剂或以水为溶剂,四丁基溴化铵(TBAB)为相转移催化剂,采用改进的工艺进行缩合反应,以70.0%-85.8%的收率合成了一系列结构新颖的含有1,4-二氮杂萘结构的吲哚类化合物3a-3b,3a1-3a5,3b1-3b5。化合物3a1-3a5,3b1-3b5为新化合物,其结构经红外光谱、质谱、核磁氢谱(碳谱)确认。荧光光谱测定表明,化合物3a-3b,3a1-3a5,3b1-3b5具有很好的荧光性能。  相似文献   

2.
在[(Py)4Co(HCrO4)2]存在下,吡啶叶立德、喹啉叶立德或异喹啉叶立德分别和1,4,4a,8a-四氢-1,4-桥亚甲基萘-5,8-二酮反应,一步法合成了中氮茚类多环化合物(1a~1c,2a~2b,3).该方法原料易得,反应条件容易控制,为合成这类化合物提供了新方法.  相似文献   

3.
二芳氧基磷酰肼(2a,2b)或二乙氧基硫代磷酰肼(4)与糖基异硫氰酸酯(5a-5b) 反应,生成相应的N-糖基硫代亚脲基—磷酰胺二芳基酯(6a-6d,7a-7d)和N-糖基硫 代亚脲基—硫代磷酰胺二乙基酯(8a-8d).  相似文献   

4.
对通过Bischler-Napieralski反应制备的那可丁及其衍生物的立体选择性进行了研究. 以N-β-(3-甲氧基-4,5-亚甲二氧基苯基)乙基-6 ,7 -二甲氧基苯并呋喃酮-3-酰胺(1)和N-β-(3,4-亚甲二氧基苯基)乙基-6 ,7 -二甲氧基苯并呋喃酮-3-酰胺(2)为原料, 经Bischler-Napieralski反应和硼氢化钠还原制得五对苯酞类四氢异喹啉类化合物对映体3, 4a, 4b, 5a, 5b, 其中3和5a经氮甲基化反应得到外消旋的那可丁(α-narcotine)和白毛莨碱(b-hydrastine). 该法制得的苯酞类四氢异喹啉类化合物具有一定的立体选择性, 产物构型以赤式对映体为主, 中间产物二氢异喹啉环8位取代基的空间位阻将导致硼氢化钠还原时产生立体选择性.  相似文献   

5.
以2-氨基-5-氯苯甲酸甲酯为原料,经五步反应制得7-氯-5-氧代-2,3,4,5-四氢-1H-苯氮杂草(2);2与5-硝基吡啶-2-甲酰氯(或对硝基苯甲酰氯)发生N-酰化反应,再经SnCl2还原制得关键中间体4a(或4b);在4的氨基上引入取代苯甲酰基或苯磺酰基合成了15个具有潜在AVP-V2受体抑制作用的新型托伐普坦类似物(5a ~5k,6b,6i,7b和8d),其结构经1H NMR,IR和MS表征.SD大鼠利尿活性试验表明,5~8均有一定的利尿活性,且部分化合物活性较高.  相似文献   

6.
消旋双环化合物(±)-7a-甲基(或乙基)-4-氢(或3'-羧甲酯)-4,6,7,7a-四氢茚满-1,5-二酮(2)用啤酒酵母菌发酵得到光学活性还原化合物(1S,7aS)-1-羟基-7a-甲基(或乙基)-4-氢(或3'-羧甲酯)-5,6,7,7a-四氢茚满-5-酮(3),以及光学活性原料(7aR)-2。同时测定了化合物3的化学纯度以及绝对构型。  相似文献   

7.
消旋双环化合物(±)-7a-甲基(或乙基)-4-氢(或3'-羧甲酯)-5,6,7,7a-四氢茚满-1,5-二酮(2)用啤酒酵母菌发酵得到光学活性还原化合物(1S,7aS)-1-羧基-7a-甲基(或乙基)-4-氢(或3'-羧甲酯)-5,6,7,7a-四氢茚满-5-酮(3),以及光学活性原料(7aR)-2。同时测定了化合物3的光学纯度以及绝对构型。  相似文献   

8.
在吡啶存在下, 由9-芴甲氧羰酰氯与四氢噻唑-2-硫酮反应得到3-(9-芴甲氧羰基)四氢噻唑-2-硫酮, 产率为78.0%。用X射线衍射法测定晶体结构, 属正交晶系, Pca21空间群, 晶体学参数:a=0.9654(2), b=2.8032(1), c=0.6069(2)nm, Z=4。分子中的C=O与C=S基团处在C(3)-N-C(4)键的同侧, 为顺式结构。用PM3分子轨道方法研究该化合物的电子结构、电荷和键序分布、前线轨道性质。  相似文献   

9.
以(R)-1-苯乙胺为起始原料,合成了手性氨甲酰基硅烷4。通过4与无手性的亚胺5a、5b和5c以及有手性的亚胺7a、7b和7c反应,得到了立体选择性加成产物α-氨基酰胺衍生物6b、6c、8a、8b和8c,其中6c、8a和8c是高立体选择性产物。手性氨甲酰基硅烷与亚胺的反应具有立体选择性,其立体选择性大小与在亚胺双键氮原子和碳原子上所连的取代基有关,因此通过选择不同的取代基可有效地不对称合成α-氨基酰胺衍生物。  相似文献   

10.
2-叔丁基-4-甲基苯酚、甲醛和乙二胺在甲醇中回流反应2 h,高产率地合成了1,2-二[3-(6-甲基-8-叔丁基-3,4-二氢-1,3-苯并噁嗪)基]乙烷(1);1与2-萘酚在甲苯中回流反应3 d制得新型双氮桥联四酚化合物(2),其结构经1H NMR,IR,MS和元素分析表征。X-射线单晶衍射测定结果表明,1属单斜晶系,空间群C2/c,晶胞参数a=16.145 5(17),b=9.120 6(7),c=17.822 8(18),β=110.831(2)°。  相似文献   

11.
Reaction of the N-toluenesulfonyl derivatives of (S)-alanine, phenylalanine, and valine (4-6) with PhPCl(2) gave in high yield the 4-methyl, benzyl, and isopropyl derivatives (7-9) of 2-phenyl-1-p-toluenesulfonyl-1,3,2-oxazaphospholidin-5-one. The ratios of the (2S,4S)/(2R,4S) diastereomers (cis/trans isomers) were 1:1, 2:1, and 10:1 for the methyl, benzyl, and isopropyl derivatives 7a,b, 8a,b, and 9a,b, respectively. For 7a,b, both isomers could be crystallized, but for the others only the major isomers were isolable. The X-ray crystal structure of 9a shows that the isopropyl and phenyl groups are mutually cis and that the tolyl moiety is oriented s-trans to both the isopropyl and phenyl groups. Reaction of 6 with Cl(2)PCH(2)CH(2)PCl(2) (10) gave a 56:38:7 mixture of the cis/cis, cis/trans, and trans/trans diphosphorus heterocycles 11a-c. The major isomer could be crystallized and isolated free of the other diastereomers. Reaction of 6 with EtPCl(2) gave a 6:1 mixture of cis/trans isomers of the ethyl-substituted heterocycles 12a,b as an inseparable oil but allowed confirmation of the structure of 11a. Slow epimerization at phosphorus may occur by inversion but more likely by ring opening/closure, since 7b, 9a, and 11a give rise upon standing in solution to mixtures containing starting material and 7a, 9b, and 11b, respectively, along with the free amino acid derivatives 4 and 6. The NMR spectra, and in particular the coupling constants between the alpha-hydrogen atom of the amino acid moiety and phosphorus, were used to establish the identities of the cis and trans isomers. Reaction of 9a with (THF)W(CO)(5) gave the phosphorus-ligated adduct (9a)W(CO)(5) (13), and the IR spectrum of this complex shows that 9a is a strongly electron-withdrawing ligand. The geometry of the sulfonamide moiety is discussed in detail, as are the (1)H NMR coupling constants. The data are consistent with the presence of little steric interaction between the cis isopropyl and phosphorus substituent in 9a, 11a, and 12a and orientation of the tolyl moiety s-cis to the isopropyl group in 9b, 12b, and 13.  相似文献   

12.
Treatment of 1-(2'-bromo-3',4'-dialkoxybenzyl)-1,2,3, 4-tetrahydroisoquinoline carbamates, 1a,c, with excess alkyllithium gave 8-oxoberbines, 2a,c, which were successively attacked in situ with another molecule of alkyllithium to give 1,2 and/or 1,4 addition products. A primary alkyllithium, such as MeLi or BuLi, gave a 1,2 addition product, 8-methyleneberbine 9a or 8-butylideneberbine 3a. t-BuLi preferred 1,4 addition, followed by elimination of the alkoxy group, to give 9-tert-butyl-8-oxoberbine 6a or 7c. s-BuLi gave a mixture of 1,2 and 1,4 addition products, 1-[2'-(2' '-methylbutyryl)benzyl]-1,2,3,4-tetrahydroisoquinoline 4a and 9-s-butyl-8-oxoberbine 5a. Similar treatments of carbamate 1b having no alkoxy group at its 3' position gave 1,2 addition products, 8-butylideneberbine 3b, 1-[2'-(2' '-methylbutyryl)benzyl]-1,2,3, 4-tetrahydroisoquinoline 4b, and 1-(2'-pivaloylbenzyl)-1,2,3, 4-tetrahydroisoquinoline 6b, in all cases. Reactions of 1a with s-BuMgCl and isoPrMgCl also gave the 1,4 adduct, 5a, and its 9-isoPr analogue, 12a. Treatment of 9a with excess NaBH(4) in AcOH gave (+/-)-coralydine (10b).  相似文献   

13.
The reaction of 6-chloro-2-hydrazinoquinoxaline 4-oxide 6 with ethyl 2-(ethoxymethylene)-2-cyanoacetate or (1-ethoxyethylidene)malononitrile gave 2-(5-amino-4-ethoxycarbonylpyrazol-1-yl)-6-chloroquinoxaline 4-oxide 7a or 2-(5-amino-4-cyano-3-methylpyrazol-1-yl)-6-chloroquinoxaline 4-oxide 7b , respectively. The reaction of compound 7a or 7b with dimethyl acetylenedicarboxylate resulted in the 1,3-dipolar cycloaddition reaction and then ring transformation to afford 4-(5-amino-4-ethoxycarbonylpyrazol-1-yl)-8-chloro-1,2,3-trismethoxycarbonylpyrrolo[1,2-α]quinoxaline 8a or 4-(5-amino-4-cyano-3-methylpyrazol-1-yl)-8-chloro-1,2,3-trismethoxycarbonylpyrrolo[1,2-α]quinoxaline 8b , respectively.  相似文献   

14.
Treatment of 3,5-dimethoxy-1,2,4-triazine ( 1a ) with methyl iodide was found to give depending on the reaction time triazinium iodide 2a , triaziniumolates 4a and 6a as well as methoxytriazinones 7a and 8a . Thermolysis of 2a gave triaziniumolates 4a and 6a . Reaction of 2a , 4a or methoxytriazinone 9a with methyl iodide in acetonitrile yielded as the sole product 6a . Reaction of 3-methoxy-5-methylthio-1,2,4-tri-azine (1b ) with methyl iodide gave triazinium iodide 2b and methylthio triazinone 7b . Hydrolysis of 2a,b afforded 4a . Reaction of 5-methoxy-3-methylthio-1,2,4-triazine ( 1c ) with methyl iodide gave triazinium iodide 2c , triaziniumolate 4b , triazinium iodide 5b and triazinone 8b . Hydrolysis of 2c yielded 4b and its thermolysis gave a mixture of 4b and 5b . Reaction of 2c , 4b and triazinone 9b with methyl iodide afforded 5b . Treatment of 3,5-bis(methylthio)-1,2,4-triazine ( 1d ) with methyl iodide was found to give a mixture of N1 and N2 methiodides 2d and 3d which gave on hydrolysis 4b and 8b , respectively. Methylation of 6-methyl derivatives 1c-g gave analogous results, however the proportions of N1 methylated products were lower and the reaction rates higher in comparison to their respective lower homologues 1a,c,d . The structures of the mesoionic dimethyl derivatives were assigned from uv, ir, 1H nmr and electron impact mass spectra. The structural assignments were eventually confirmed by quantum chemical calculations of net charge distributions, bond lengths and ipso angles of the C5?O bonds.  相似文献   

15.
3-Acetyltropolone ( 1 ) reacted with phenylhydrazine to give 3-acetyltropolone phenylhydrazone ( 3 ) and 3-methyl-1-phenyl-1,8-dihydrocycloheptapyrazol-8-one ( 4 ). The former ( 3 ) cyclized to afford the latter ( 4 ). The reaction of 3-acetyl-2-methoxytropone ( 2a ) with phenylhydrazine gave 4 , 3-methyl-2-phenyl-2,8-dihydrocyclo-heptapyrazol-8-one ( 5 ), and 3-methyl-2-phenyl-2,8-dihydrocycloheptapyrazol-8-one phenylhydrazone ( 6 ). The compound ( 5 ) reacted with phenylhydrazine to afford 6 . The reaction of 7-acetyl-2-methoxytropone ( 2b ) with phenylhydrazone gave 7-acetyl-2-methoxytropone phenylhydrazone ( 7 ), 7-acetyl-2-(N′-phenylhydrazino)-tropone phenylhydrazone ( 8 ), 3-methyl-1-phenyl-1,8-dihydrocycloheptapyrazol-8-one phenylhydrazone ( 9 ), and 6 . The compound ( 7 ) was heated to afford 4 and reacted with phenylhydrazine to afford 8 and 9 . The compound ( 8 ) was also refluxed to give 9 .  相似文献   

16.
[structure: see text] Thianthrene cation radical tetrafluoroborate (Th*+ BF4(-)) added to the terminal alkynes 1-pentyne, 1-hexyne, 1-heptyne, 1-octyne, 1-nonyne, and 1-decyne to form trans-1,2-bis(5-thianthreniumyl)alkene tetrafluoroborates (1-6). Similarly, addition of phenoxathiin cation radical tetrafluoroborate (PO*+ BF4(-)) to the same alkynes gave 1,2-bis(10-phenoxathiiniumyl)alkene tetrafluoroborates (7-12). The trans configuration of two of the adducts (1 and 4) was shown with X-ray crystallography. When solutions of 1-6 in chloroform were stirred with activated alumina, cis elimination of a proton and thianthrene (Th) occurred with the formation of 1-(5-thianthreniumyl)alkyne tetrafluoroborates (1a-6a). Similar treatment of 8-12 caused elimination of a proton and phenoxathiin (PO) with formation of 1-(10-phenoxathiiniumyl)alkene tetrafluoroborates (8a-12a). Stirring of 1a-6a with alumina for short periods of time caused their conversion into 5-[(alpha-keto)alkyl]thianthrenium ylides (1b-6b) and alpha-ketols, RC(O)CH2OH (1c-6c).  相似文献   

17.
Lithiation of 2-methylfuro[2,3-b]- 1a , -[2,3-c]- 1c and -[3,2-c]pyridine 1d with lithium diisopropylamide at ?75° and subsequent treatment with deuterium chloride in deuterium oxide afforded 2-monodeuteriomethyl compounds 2a, 2c and 2d , while 2-methylfuro[3,2-b]pyridine 1b gave a mixture of 1b, 2b , 2-methyl-3-deuteriofuro[3,2-b]pyridine 2′b and 2-(1-proynyl)pyridin-3-ol 5 . The same reaction of 1a at ?40° gave 3-(1,2-propadienyl)pyridin-2-ol 3 and 3-(2-propynyl)pyridin-2-ol 4 . Reaction of the lithio intermediates from 1a, 1c and 1d with benzaldehyde, propionaldehyde and acetone afforded the corresponding alcohol derivatives 6a, 6c, 6d, 7a, 7c, 7d, 8a, 8c and 8d in excellent yield; while the reaction of lithio intermediate from 1b gave the expected alcohols 6b and 8b in lower yields accompanied by formation of 3-alkylated compounds 9, 11, 12 and compound 5 . While reaction of the intermediates from 1a, 1b and 1d with N,N-dimethylacetamide yielded the 2-acetonyl compounds 13a, 13b and 13d in good yield, the same reaction of 1c did not give any acetylated product but recovery of the starting compound almost quantitatively.  相似文献   

18.
This paper describes the preparation and hydrolysis of 2-cyano and 3-cyano derivatives of furo[3,2-b]-, furo[2,3-c]- and furo[3,2-c]pyridine. Treatment of furopyridines 1a , 1b and 1c with n-butyllithium in hexane-tetrahydrofuran at -70° and subsequent addition of N,N-dimethylformamide yielded 2-formyl derivatives 2a , 2b and 2c. Dehydration of the oximes 4a , 4b and 4c of 2a , 2b and 2c gave 2-cyano compounds 5a , 5b and 5c , which were hydrolyzed to give 2-carboxylic acids, 6a, 6b and 6c , respectively. Reaction of 3-bromo compounds 7a , 7b and 7c with copper(I) cyanide in N,N-dimethylformamide afforded 3-cyano derivatives 8a , 8b and 8c. Alkaline hydrolysis of 8a , 8b and 8c gave compounds formed by fission of the 1-2 bond of furopyridines 9a , 9b and 9c , while acidic hydrolysis gave the corresponding carboxamides, 10a , 10b and 10c.  相似文献   

19.
3-Phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4- b ][1,3,4]thiadiazepine-6,8-dione ( 1 ) was condensed with o -aminothiophenol, 2-amino-ethanol or cystamine to afford compounds 2-4 respectively. Treatment of compound 1 with dimethylthiomethylenemalononitrile yielded the corresponding pyrano[3,2- f ][1,2,4]triazolo[3,4- b ]-[1,3,4]thiadiazepine derivative 5 . 7-[5-Amino-1,3-dithiolan-2-ylidene]-3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4- b ][1,3,4]thiadiazepine-6,8-dione ( 6 ) was obtained by treating compound 1 with CS 2 and chloroacetonitrile. Thiation of compound 1 gave the corresponding thioanalog 7 , which in turn was condensed with malononitrile to give 3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4- b ][1,3,4]thiadiazepine-6-one-8-ylidenemalononitrile ( 8 ). On treating compound 8 with benzaldehyde or p -nitrobenzaldehyde, pyrano[1,2,4]triazolo[1,3,4]thiadiazepin derivatives 9a , b , respectively, were obtained. Compound 8 was treated with CS 2 and methyl iodid to give the corresponding dithiomethylmethylene derivative 10 which was subjected to react with aniline to give pyrido[1,2,4]triazolo[1,3,4]thiadiazepine derivative 11 . Compound 8 was treated with 3-aminopyridine, o -aminothiophenol, or o -phenylenediamene to yield compounds 12 and 13a , b respectively. Finally, tertiary amines or activated phenols were condensed with compound 8 to yield compounds 14 and 15a , b respectively.  相似文献   

20.
Bromination of 3-bromofuro[2,3-b]- 1a , -[3,2-b]- 1b and - [3,2-c]pyridine 1d afforded the 2,3-dibromo derivatives 2a, 2b and 2d , while the -[2,3-c]- compound 1c did not give the dibromo derivative. Nitration of 1a-d gave the 2-nitro-3-bromo compounds 3a-d . The N-oxides 4a-d of 1a-d were submitted to the cyanation with trimethylsilyl cyanide to yield the corresponding α-cyanopyridine compound 6a-d . Chlorination of 4a and 4d with phosphorus oxychloride gave mainly the chloropyridine derivatives 7a, 7′a and 7d , while 4b and 4c gave mainly the chlorofuran derivatives 7′b and 7′c accompanying formation of the chloropyridine derivatives 7b, 7′b and 7c . Acetoxylation of 4a and 4b with acetic anhydride yielded the acetoxypyridine compounds 8a, 8′a and 8b , while 4c and 4d gave the acetoxypyridine 8′c, 8′d and 8′d , pyridone 8c and 8d , acetoxyfuran 8′c and dibromo compound 9c and 9′c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号