首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To obtain optically active threo-2-amino-3-hydroxy-3-phenylpropanoic acid (1) via optical resolutions by replacing and preferential crystallization, the racemic structure of (2RS,3SR)-1 hydrochloride [(2RS,3SR)-1.HCl] was examined based on the melting point, solubility, and infrared spectrum. (2RS,3SR)-1.HCl was indicated to exist as a conglomerate at room temperature, although it forms a racemic compound at the melting point. When, in optical resolution by replacing crystallization, L-phenylalanine methyl ester hydrochloride (L-2) was used as the optically active co-solute, (2R,3S)-1.HCl was preferentially crystallized from the supersaturated racemic solution; the use of D-2 as the co-solute afforded (2S,3R)-1.HCl with an optical purity of 95%. In addition, optical resolution by preferential crystallization was successfully achieved to give successively (2R,3S)- and (2S,3R)-1.HCl with optical purities of 90-92%. The (2R,3S)- and (2S,3R)-1.HCl purified by recrystallization from 1-propanol were treated with triethylamine in methanol to give optically pure (2R,3S)- and (2S,3R)-1.  相似文献   

2.
To synthesize optically active 2-amino-2-methyl-3-phenylpropanoic acid (1), (RS)-2-benzoylamino-2-benzyl-3-hydroxypropanoic acid [(RS)-2] was first optically resolved using cinchonidine as a resolving agent to yield optically pure (S)- and (R)-2 in yields of about 70%, based on half of the starting amount of (RS)-2. Next, the racemic structure of (RS)-2 was examined based on melting point, solubility, IR spectrum, and binary and ternary phase diagrams, with the aim of optical resolution by preferential crystallization of (RS)-2. Results indicated that the (RS)-2 exists as a conglomerate at room temperature, although it forms a racemic compound at the melting point. The optical resolution by preferential crystallization yielded (S)- and (R)-2 with optical purities of about 90%, which were fully purified by recrystallization. After O-tosylation of (S)- and (R)-2, reduction by zinc powder and sodium iodide gave (R)- and (S)-1, respectively.  相似文献   

3.
The racemic structure of (1RS,3RS)-1,2,3,4-tetrahydro-6,7-dihydroxy-1-methyl-3-isoquinolinecarboxylic acid [(1RS,3RS)-1] was examined based on the melting point, solubility, and IR spectrum, with the aim of optical resolution by preferential crystallization. (1RS,3RS)-1 was indicated from these results to exist as a conglomerate. The successive optical resolution by preferential crystallization of (1RS,3RS)-1 yielded (1S,3S)- and (1R,3R)-1 with optical purities of 85--95% at 66--81% degrees of resolution, which were fully purified by recrystallization.  相似文献   

4.
(S)-3-Hydroxy-3-phenylpropanoic acid is a potential progenitor of optically pure tomoxetine hydrochlo- ride and fluoxetine hydrochloride which are currently available antidepressant drugs. We report here the chemical synthesis of racemic substrate (R,S)-ethyl 3-hydroxy-3-phenylpropanoate and enzymatic preparation of S-isomer of the substrate by employing Porcine pancreas lipase(PPL) as a biocatalyst. Optimum enzyme-catalyzed reaction con- ditions, such as the effects of the temperature, pH and solvents on conversion degree and enantiomeric excess, were studied. An optimal temperature of 35 ℃ and pH=7.5 are the best for the resolution of (R,S)-ethyl 3-hydroxy-3- pheylpropanoate by PPL when 0.1 mol/L phosphate buffer solution acts as a medium. This work provides a practi- cally chemo-enzvmatic oreoaration of chiral β-hvdroxv acid by PPL.  相似文献   

5.
The absolute configuration of the more active (-)-enantiomer of the anticholinergic trihexyphenidyl hydrochloride has been established as (R) by syntheses of (S)-(+)-procyclidine hydrochloride, whose absolute configuration has been established previously, and (S)-(+)-trihexyphenidyl hydrochloride from the same chiral building block, viz. (S)-(-)-cyclohexyl-3-hydroxy-3-phenylpropanoic acid. Both enantiomers of this chiral synthon were prepared by optical resolution of the corresponding racemate, employing (R)- and (S)-1-phenylethylamine, respectively, as resolving agents.  相似文献   

6.
Oxidation of enantiomerically pure (R)-N(1)-1'-(1'-naphthyl)ethyl-2,7-dihydro-1H-azepine with m-CPBA in the presence of HBF(4) and BnOH gave (3S,4R,5S,6S,1'R)-N(1)-1'-(1'-naphthyl)ethyl-3-hydroxy-4-benzyloxy-5,6-epoxyazepane as the major product and as a single diastereoisomer after chromatography. Elaboration of this highly functionalized intermediate via ring contraction to (2S,3R,4S,5S,1'R)-N(1)-benzyl-2-chloromethyl-3-benzyloxy-4,5-epoxypiperidine followed by regioselective epoxide ring opening, functional group manipulation, and deprotection gave (+)-1-deoxyaltronojirimycin. Alternatively, resolution of (RS,RS)-N(1)-benzyl-3-hydroxy-4-benzyloxy-2,3,4,7-tetrahydro-1H-azepine or (3RS,4SR,5RS,6RS)-N(1)-benzyl-3-hydroxy-4-benzyloxy-5,6-epoxyazepane by preparative chiral HPLC and subsequent elaboration allows access to the enantiomers of 1-deoxynojirimycin and 1-deoxyaltronojirimycin, respectively.  相似文献   

7.
Lo W  Huang S  Zheng SL  Holm RH 《Inorganic chemistry》2011,50(21):11082-11090
Cubane-type clusters [Fe(4)S(4)(SR*)(4)](2-) containing chiral thiolate ligands with R* = CH(Me)Ph (1), CH(2)CH(Me)Et (2), and CH(2)CH(OH)CH(2)OH (3) have been prepared by ligand substitution in the reaction systems [Fe(4)S(4)(SEt)(4)]/R*SH (1-3, acetonitrile) and [Fe(4)S(4)Cl(4)](2-)/NaSR*(3, Me(2)SO). Reactions with successive equivalents of thiol or thiolate generate the species [Fe(4)S(4)L(4-n)(SR*)(n)](2-) (L = SEt, Cl) with n = 1-4. Clusters 1 and 2 were prepared with racemic thiols leading to the possible formation of one enantiomeric pair (n = 1) and seven diastereomers and their enantiomers (n = 2-4). Reactions were monitored by isotropically shifted (1)H NMR spectra in acetonitrile or Me(2)SO. In systems affording 1 and 2 as final products, individual mixed-ligand species could not be detected. However, crystallization of (Et(4)N)(2)[1] afforded 1-[SS(RS)(RS)] in which two sites are disordered because of occupancy of R and S ligands. Similarly, (Et(4)N)(2)[2] led to 2-[SSSS], a consequence of spontaneous resolution upon crystallization. The clusters 3-[RRRR] and 3-[SSSS] were obtained from enantiomerically pure thiols. Successive reactions lead to detection of species with n = 1-4 by appearance of four pairs of diastereotopic SCH(2) signals in both acetonitrile and Me(2)SO reaction systems. Identical spectra were obtained with racemic, R-(-), and S-(+) thiols, indicating that ligand-ligand interactions are too weak to allow detection of diastereomers (e.g., [SSSS] vs [SSRR]). The stability of 3 in Me(2)SO/H(2)O media is described.  相似文献   

8.
The phase diagram of R(+)-S(-) efaroxan hydrochloride (Tfus.(R)=245.1±0.3°C. ΔHfus.(R)=119.6±3.0 J g-1) shows a racemic compound. The melting temperature and melting enthalpy of the compound are: Tfus.(RS)=247.8±0.2°C and ΔHfus. (RS)=124.6±2.4 J g-1. A solid ↔ solid transformation takes place at Ttrs.=180±1°C, ΔHtrs.=15.0±0.4 J g-1. This transition is observed between 3 and 97% R(+). The stability of the racemic compound already established in a previous study was confirmed by the value of Petterson's coefficient (i=1.19). The two eutectic positions at 20 and 80% R(+) that define the range over which the racemic compound is found, exclude the use of resolution methods by preferential crystallization. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The optical resolution of 2-amino-1-phenylethanol (2-APE) by the solvent switch method was investigated using dehydroabietic acid (DAA), a natural chiral acid obtained as one of the main components of disproportionated rosin. The solvent dependency of optical rotation measurements of 2-APE, DAA and the diastereomeric salts suggested solvent control of optical resolution. Both (R)- and (S)-2-APE were resolved, as the first success for aminoalcohols, only by changing the resolving solvents: (S)-2-APE was obtained in high optical purity by a single crystallization operation with polar solvents (epsilon > 50), whereas the efficiency was lower for (R)-2-APE using less polar solvents (20 < epsilon < 40). The results were compared and discussed with reference to the crystal structures of the diastereomeric salts.  相似文献   

10.
We describe the practical synthetic route for (2S)-7-methoxy-1,2,3,4-tetrahydro-2-naphthylamine 1(2S)-2-amino-7-methoxytetraline; (S)-AMT]. (2R)-2-(3-Methoxybenzyl)succinic acid [(R)-1] was obtained by the optical resolution of 2-(3-methoxybenzyl)succinic acid (1) as the salt of (1R,2S)-2-(benzylamino)cyclohexylmethanol (7), and (R)-1 was converted to the optically active (2S)-7-methoxy-1,2,3,4-tetrahydro-2-naphthoic acid [(S)-2] by the intramolecular Friedel-Crafts reaction followed by catalytic hydrogenation. (S)-AMT was obtained from the acid (S)-2 by Hofmann rearrangement without racemization.  相似文献   

11.
Herein we present a novel route to enantiomerically enriched chiral alpha-substituted carboxylic acids by crystallization-induced dynamic resolution (CIDR) of their diastereomeric salts with chiral amines. Thus, the racemic alpha-bromo acid 3 is converted reliably with (1R,2S)-2-amino-1,2-diphenylethanol in the presence of a catalytic amount of tetrabutylammonium bromide into its R-enantiomer 4 in 90% yield with 88% ee. Similarly, the racemic alpha-thiobenzoyl acid 5 could be resolved to 90% ee in 74% yield. Further enrichment to enantiomeric homogeneity could be achieved in both cases by crystallization. In a telescoped, two-step process, S-alpha-thiobenzoyl acid 6 (>or=99.6% ee) was prepared from the racemic bromide 3 in 63% yield. State-of-the-art parallel experimentation enabled rapid screening for suitable dynamic resolution conditions. Kinetic studies defined the influence of temperature, tetrabutylammonium bromide concentration, molarity, and solvent polarity on the resolution rate, product yield, and enantiomeric excess.  相似文献   

12.
R(+) and S(?) enantiomers of α-methyl β-propiolactone (MPL) have been synthesized from the corresponding α-methyl β-hydroxymethylpropionates and racemic MPL from methyl methacrylate. The optical purity and absolute configuration of these lactones were determined using 1H-NMR spectroscopy after complexation with a chiral compound: 2,2,2-trifluoro-1-(9-anthryl)-ethanol. Optical purities of 100% were obtained for both the S(?) ([α0] = ?10.4°, c = 1.3 g/dL in CHCl3) and the R(+) ([α0] = +10.5°, c = 1.0 g/dL in CHCl3) enantiomers. The corresponding racemic and optically active polylactones [poly(MPL)] were prepared by anionic polymerization, in bulk and in solution, as well as poly(MPL)s of intermediate optical purities. The polymers thus obtained are optically active ([α0] = 16.2° in CHCl3 for the optically pure polymer, S configuration) and exhibit significant differences. For example, the racemic poly(MPL) is soluble in several organic solvents such as tetrahydrofuran, benzene, CCl4, CH2Cl2, hexafluoroisopropanol, and CHCl3, whereas the optically active poly(MPL)s are soluble in CHCl3 and hexafluoroisopropanol only. Moreover, racemic poly(MPL) is amorphous whereas optically active poly(MPL)s are semicrystalline for optical purities larger than 51%. Melting temperatures and enthalpies of fusion of the semicrystalline polylactones vary with optical purity whereas glass transition temperatures remain invariant for all polymers, at about ?28°C. The poly(MPL) of highest optical purity exhibits a melting temperature of 95°C and an enthalpy of fusion of 61 J/g.  相似文献   

13.
手性双季铵盐诱导下的硝基甲烷与查尔酮的Michael反应   总被引:1,自引:0,他引:1  
双季铵盐相转移催化剂具有用量少、催化活性高的特点,比单官能团相转移催化剂的催化性能更为显著。手性季铵盐是进行不对称  相似文献   

14.
As an extension of previous studies on the total synthesis of (2R,4′R,8′R)-α-tocopherol ( 1 ) [1] [2], (S)-(?)-2-(6-benzyloxy-2,5,7,8-tetramethylchroman)acetic acid ( 6 ), a pivotal intermediate, possessing the absolute configuration required for construction of 1 was prepared by optical resolution of the racemic modification 11 . the latter substance was obtained by two routes, one emanating from the hydroxy acetal 7 [1] and the other based upon the Lewis acid mediated cycloaddition of trimethylhydroquinone to rac.-3-hydroxy-3-methylpent-4-en-l-yl acetate ( 16 ) giving rac. ethyl 2-(6-hydroxy-2,5,7,8-tetramethyl-chroman)acetate ( 12 ).  相似文献   

15.
The relative configuration of the two diastereoisomers of (±)2-[?-(2-ethoxyphenoxy)benzyl] morpholine is determined by a synthesis involving regio and stereo specific reactions. (RS,RS) diastereoisomer FCE 20124 was separated into its (+) and (-) enantiomers both by crystallization of the optically active mandelate salt and by a multi-step synthesis from (+)-(2S,3R)-3-phenylglycidic acid.  相似文献   

16.
A diastereomeric (epimeric) mixture of ethylmethylphenyltelluronium (1S)-(+)-camphor-10-sulfonate (dia.-1) was optically resolved by fractional recrystallization into the diastereomerically pure isomers (R)(Te)-1 and (S)(Te)-1. The absolute configurations of the isomers were determined by the X-ray crystallographic analysis of (R)(Te)-1. Enantiomerically pure (R)-ethylmethylphenyltelluronium perchlorate, tetrafluoroborate, p-chlorobenzenesulfonate, bornane-10-sulfonate, tetraphenylborate, and picrylsulfonate (R)-2-7 were isolated, respectively, by anion-exchange reactions of diastereomerically pure (R)(Te)-1. The optically active telluronium salts were found to show peculiar optical properties on their specific rotations and circular dichroism spectra in solutions compared with those of the corresponding sulfonium and selenonium salts. On the basis of NMR studies, the behavior on the optical properties of the optically active telluronium salts was found to be caused by a strong solvation in polar solvents.  相似文献   

17.
Reaction of 3-amino-8-hydroxy-1,6-dioxo-2,7-diazaspiro[4.4]non-3-en-4-carbonitriles with amines in 2-propanol at room temperature provided the corresponding ammonium salts of 3-amino-8-hydroxy-1,6-dioxo-4-cyano-2,7-diazaspiro[4.4]non-3-en-2-ides.  相似文献   

18.
(M)-(-)- and (P)-(+)-Trispiro[2.0.0.2.1.1]nonanes [(M)- and (P)-3] as well as (M)-(-)- and (P)-(+)-tetraspiro[2.0.0.0.2.1.1.1]undecanes [(M)- and (P)-4]-enantiomerically pure unbranched [4]- and [5]triangulanes-have been prepared starting from racemic bicyclopropylidenecarboxylic [(1RS)-12] and exo-dispiro[2.0.2.1]heptane-1-carboxylic [(1RS,3SR)-13] acids. The optical resolutions of rac-12 and rac-13 furnished enantiomerically pure acids (S)-(+)-12, (R)-(-)-12, (1R,3S)-(-)-13, and (1S,3R)-(+)-13. The ethyl ester (R)-25 of the acid (R)-(-)-12 was cyclopropanated to give carboxylates (1R,3R)-26 and (1R,3S)-26. The ester (1R,3S)-26 and acids (1R,3S)-13 and (1S,3R)-13 were converted into enantiomerically pure methylene[3]triangulanes (S)-(-)- and (R)-(+)-28. An alternative approach consisted of an enzymatic deracemization of endo-[(1SR,3SR)-dispiro[2.0.2.1]heptyl]methanol (rac-20) or anti-[(1SR,3RS)-4-methylenespiropentyl]methanol (rac-18). This afforded (S)-(-)- and (R)-(+)-28 (starting from rac-20), as well as enantiomerically pure (M)-(-)- and (P)-(+)-1,4-dimethylenespiropentanes [(M)- and (P)-23] starting from rac-18. The methylenetriangulanes (S)-(-)- and (R)-(+)-28 were cyclopropanated furnishing (M)- and (P)-3. The rhodium-catalyzed cycloaddition of ethyl diazoacetate onto (S)-(-)- and (R)-(+)-28 yielded four diastereomeric ethyl trispiro[2.0.0.2.1.1]nonane-1-carboxylates in approximately equal proportions. The enantiomerically pure esters (1R,3S,4S)- and (1S,3R,4R)-30 were isolated by careful distillation and then transformed into [5]triangulanes (M)- and (P)-4 using the same sequence of reactions as applied for (M)- and (P)-3. The structures of the key intermediates (R)-12 and rac-31 were confirmed by X-ray analyses. Although [4]- and [5]triangulanes have no chromophore which would lead to any significant absorption above 200 nm, they have remarkably high specific rotations even at 589 nm with [alpha](20)D=-192.7 [(M)-3, c=1.18, CHCl(3))] or +373.0 [(P)-4, c=1.18, CHCl(3))]. This remarkable optical rotatation is in line with their helical arrangement of sigma bonds, as confirmed by a full valence space single excitation configuration interaction treatment (SCI) in conjunction with DFT computations at the B3LYP/TZVP//B3LYP/6-31+G(d,p) level of theory which reproduce the ORD very well. Thus, it is appropriate to call the helically shaped unbranched [n]triangulanes the "sigma-[n]helicenes", representing the sigma-bond analogues of the aromatic [n]helicenes.  相似文献   

19.
The ferrocenic ammonium (Rp)- and (Sp)-[1-CH2NR(3-)-2-CH3-C5H3Fe-C5H5] iodide salts with R=CH3, C2H5, n-C3H7, n-C4H9, were synthesized starting from the (Rp)- and (Sp)-[1-CH2N(CH3)2-2-CH3-C5H3Fe-C5H5] amines obtained in their optically active forms through asymmetric cyclopalladation of [C5H5Fe-C5H4CH2N(CH3)2]. 1H NMR studies of these planar chiral 1,2-disubstituted ferrocenic ammonium iodide salts in the presence of the (Delta)-(tris(tetrachlorobenzenediolato)phosphate(V) anion), [(Delta)-Trisphat] support the formation of specific diastereomeric ion pairs. Such intermolecular interactions can be related to the self-assembly of the two-dimensional optically active compounds [[(Sp)-1-CH2N(n-C3H7)3-2-CH3-C5H3Fe-C5H5][Mn (Delta)-Cr(C2O4)3]] and [[(Rp)-1-CH2N(n-C3H7)3-2-CH3-C5H3Fe-C5H5][Mn (Lambda)-Cr(C2O4)3]] starting from the resolved (Rp)- and (Sp)-[1-CH2N(n-C3H7)3-2-CH3-C5H3Fe-C5H5]+ ion associated to the racemic anionic building block rac-[Cr(C2O4)3]3- and Mn2+. Both enantiomeric forms of the networks behave as ferromagnets with a Curie temperature of 5.7 K.  相似文献   

20.
The reactivity of various 2-oxyallyl cations toward 2,2'-methylenedifuran (1b), 2,2'-(hydroxymethyl)difuran (1c), 2,2'-(trimethylsilylmethylene)difuran (1d), and di(2-furyl)methanone (1e) has been explored. Difuryl derivatives 1c, 1d, and 1e refused to undergo formal double [4+3]-cycloadditions. Conditions have been found to convert 1b into meso-1,1'-methylenedi[(1R,1'S,5S,5'R)- (3) and (+/-)-1,1'-methylenedi[(1RS,1'SR,5SR,5'RS)-8-oxabicyclo[3.2.1]oct-6-en-3-one] (4) that do not require CF(3)CH(OH)CF(3) as solvent. High yields of meso-1,1'-methylenedi[(1R,1'S,2S,2'R,4R,4'S,5S,5'R)- (5) and (+/-)-1,1'-methylenedi[(1RS,1'RS,2SR,2'SR,4RS,4'RS,5SR,5'SR)-2,4-dimethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one] (6) have been obtained when 1b was reacted with 2,4-dibromopentan-3-one (7h) and NaI/Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号