首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Thioamide thiosemicarbazone derived of 2-chloro-4-hydroxy-benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. Complexes 1a′ and 1b’ were also obtained by the reaction of HL1 and HL3 with [ReBr(CO)5] in toluene.All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3 and 1a·H2O were also established by X-ray diffraction. In 1a, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms, forming a five-membered chelate ring, as well as three carbonyl carbon and chloride atoms. The resulting coordination polyhedron can be described as a distorted octahedron.The study of the crystals obtained by slow evaporation of methanol and DMSO solutions of the adducts 1a′ and 1b, respectively, showed the formation of dimer structures based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6]·3H2O (2a)·3H2O and [Re2(L2)2(CO)6]·(CH3)2SO (2b)·2(CH3)2SO. Amounts of these thiosemicarbazonate complexes [Re2(L)2(CO)6] (2) were obtained by reaction of the corresponding free ligands with [ReCl(CO)5] in dry toluene.In 2a·3H2O and 2b·2(CH3)2SO the dimer structures are established by Re–S–Re bridges, where S is the thiolate sulphur from a N,S-bidentate thiosemicarbazonate ligand. In both structures the rhenium coordination sphere is similar; the dimers are in the same diamond Re2S2 face.  相似文献   

2.
《Polyhedron》2007,26(9-11):1993-1996
An iron(II) complex with nitronyl nitroxides, [FeII(dppNN)2](BF4)2 · CH3COCH3 (1) (dppNN = 2,6-di(pyrazol-1-yl)-4-(4,4,5,5-tetramethyl-1-oxido-3-ylooxy-4,5-dihydro-3H-imidazol-2′-yl)pyridine) was synthesized. In 1 the central iron(II) ion was coordinated by two tridentate ligands with nitronyl nitroxides. Magnetic susceptibility measurements showed that χmT values below 130 K was almost temperature independent, while upon increasing temperature χmT values showed gradual increase, suggesting an occurrence of a spin transition from low to high spin state. Green light irradiation on powder sample at 5 K resulted in spin conversion (LIESST).  相似文献   

3.
Two new nickel(II) [Ni(L)2] and copper(II) [Cu(L)2] complexes have been synthesized with bidentate NO donor Schiff base ligand (2-{(Z)-[furan-2-ylmethyl]imino]methyl}-6-methoxyphenol) (HL) and both complexes Ni(L)2 and Cu(L)2 have been characterized by elemental analyses, IR, UV–vis, 1H, 13C NMR, mass spectroscopy and room temperature magnetic susceptibility measurement. The tautomeric equilibria (phenol-imine, O–H?N and keto-amine, O?H–N forms) have been systemetically studied by using UV–vis absorption spectra for the ligand HL. The UV–vis spectra of this ligand HL were recorded and commented in polar, non-polar, acidic and basic media. The crystal structures of these complexes have also been determined by using X-ray crystallographic techniques. The complexes Ni(L)2 and Cu(L)2 crystallize in the monoclinic space group P21/n and P21/c with unit cell parameters: a = 10.4552(3) Å and 12.1667(4) Å, b = 8.0121(3) Å and 10.4792(3) Å, c = 13.9625(4) Å and 129.6616(3)Å, V = 1155.22(6) Å3 and 1155.22(6) Å3, Dx = 1.493 and 1.476 g cm?3 and Z = 2 and 2, respectively. The crystal structures were solved by direct methods and refined by full-matrix least squares to a find R = 0.0377 and 0.0336 of for 2340 and 2402 observed reflections, respectively.  相似文献   

4.
A series of ruthenium(II) complexes bearing redox-active o-benzoquinonediimines (o-bqdi) was synthesized and characterized. Reactions of [RuCl(bdmpza)(η4-cod)] (bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetato; cod = 1,5-cyclooctadiene) and 1,2-benzenediamines such as o-phenylenediamine (o-pdaH2), 4,5-difluoro-1,2-benzenediamine (o-pdaF2), 4,5-dichloro-1,2-benzenediamine (o-pdaCl2), and 4,5-dimethoxy-1,2-benzenediamine (o-pda(OMe)2) afforded [RuCl(bdmpza)(o-bqdiX2)] (X = H, 1; X = F, 2; X = Cl, 3; X = OMe, 4).  相似文献   

5.
《Tetrahedron: Asymmetry》2006,17(17):2516-2530
(S)-(−)-(Benzotriazol-1-yl)- and (S)-(−)-(benzotriazol-2-yl)-alkan-2-ols 7a9a, 7b9b and their (R)-(+)-acetates 10a12a and 10b–12b were prepared in high enantiomeric excess via lipase from Pseudomonas fluorescens (Amano AK) catalyzed enantioselective acetylation of racemic alcohols 4a6a and 4b6b with vinyl acetate in tert-butyl methyl ether or toluene at 23 °C. The enantioselectivity of this transformation was dependent on the length of the alkyl chain with E-values ranging from 30 to 57. Several benzotriazole substituted ketones 1a3a and 1b3b were synthesized from 1H-benzotriazole and corresponding haloketones. These compounds were stereoselectively reduced with Baker’s yeast in water or in organic solvent containing 5% v/v of water at 30 °C to give the (S)-(−)-alcohol. Better stereoselectivity was observed in the kinetic resolution of racemic alcohols 4a6a and 4b6b (ee = 69–92% at 44–52% conversion) compared to reduction of corresponding prochiral ketones 1a3a and 1b3b with Baker’s yeast (ee = 40–67% at 39–89% conversion). Enhanced enantioselectivities were observed at lower temperatures.  相似文献   

6.
《Comptes Rendus Chimie》2014,17(1):81-90
The reaction of 1,2-bis(diphenylphosphino)ethane (dppe) with various ketones in acetone produces the new phosphonium salts [RC(O)CH2PPh2(CH2)2PPh2CH2C(O)R]X2 (R = 2-naphtyl, X = Br (1); R = 2,4-dichlorophenyl, X = Cl (2); R = 3-nitrophenyl, X = Br (3)). Further treatment with a base gives the symmetrical phosphorus ylides, RC(O)CHPPh2(CH2)2PPh2CHC(O)R (R = 2-naphtyl (4), 2,4-dichlorophenyl (5), 3-nitrophenyl (6)). These ligands react with Pd(II) chloride to form C,C-chelated complexes with the composition [RC(O)CHPPh2(CH2)2PPh2CHC(O)R]PdCl2, where R = 2-naphtyl (7), 2,4-dichlorophenyl (8), 3-nitrophenyl (9). These compounds have been characterized by elemental analysis and spectroscopic methods and consist of seven-membered rings formed by the coordination of the ligands through the two ylidic carbon atoms to the metal center. The structure of compound 5 has been characterized crystallographically. The palladium complex 9 is employed in the Suzuki cross-coupling reaction between phenylboronic acid and several aryl halides. It was found to be a competent catalyst for a variety of substrates to afford the coupled products in high yields using DMF as a solvent. The biaryl products were obtained under aerobic conditions in short reaction times with a lower loading of the catalyst (0.001 mol%).  相似文献   

7.
Fluorescence properties of five 4-acyl pyrazolone based hydrazides (H2SBn) and their Fe (III) heterochelates of the type [Fe(SBn)(L)(H2O)]·mH2O [H2SBn = nicotinic acid [1-(3-methyl-5-oxo-1-phenyl-4,5-di hydro-1H-pyrazol-4yl)-acylidene]-hydrazide; where acyl = –CH3, m = 4 (H2SB1); –C6H5, m = 2 (H2SB2); –CH2–CH3, m = 3 (H2SB3); –CH2–CH2–CH3, m = 1.5 (H2SB4); –CH2–C6H5, m = 1.5 (H2SB5) and HL = 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid] were studied at room temperature. The fluorescence spectra of heterochelates show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been reported.  相似文献   

8.
Two hexanuclear zinc(II) complexes, [Zn6(L1)22-OH)22-CH3COO)8] · CH3CN (1 · CH3CN) and [Zn6(L2)22-OH)22-CH3COO)8] · 4CH3CN (2 · 4CH3CN), where HL1 = 4-methyl-2,6-bis(cyclohexylmethyliminomethyl)-phenol and HL2 = 4-methyl-2,6-bis(1-naphthalylmethyliminomethyl)-phenol, have been synthesized and characterized by elemental analysis, FT-IR and fluorescence spectroscopic methods, and by X-ray diffraction analysis. In the asymmetric unit of complex 1, two of the three zinc atoms have pentacoordinate geometries and the other is tetrahedrally coordinated, whereas the three distinct Zn atoms in complex 2 adopt three different coordination environments, namely distorted octahedral, trigonal bipyramidal and tetrahedral. The fluorescence properties of the ligands and complexes have been investigated.  相似文献   

9.
Alkyl and arylplatinum complexes with 1,5-cyclooctadiene ligand, [PtR2(cod)] (R = Me, Ph, C6H4-p-CF3, C6F5), react with secondary phosphines, PHR′2 (R′ = i-Bu, t-Bu, Ph), to afford the mononuclear platinum complexes, cis-[PtR2(PHR′2)2] (1a: R = Me, R′ = i-Bu; 1b: R = Me, R′ = t-Bu; 1c: R = Me, R′ = Ph; 2a: R = Ph, R′ = i-Bu; 2b: R = Ph, R′ = t-Bu; 2c: R = R′ = Ph; 3a: R = C6H4-p-CF3, R′ = i-Bu; 3b: R = C6H4-p-CF3, R′ = t-Bu; 3c: R = C6H4-p-CF3, R′ = Ph; 4a: R = C6F5, R′ = i-Bu; 4c: R = C6F5, R′ = Ph) in 81–98% yields. Molecular structures of the complexes except for 1a, 1c and 2a were determined by X-ray crystallography. Complex 1b has a square-planar structure with Pt–C(methyl) bonds of 2.083(8) and 2.109(8) Å, while the Pt–C(aryl) bonds of 2bc, 3ac, 4a and 4c (2.055(1)–2.073(8) Å) are shorter than them. Thermal decomposition of 1b, 2ac, and 3ac releases methane, biphenyl or 4,4′-bis(trifluoromethyl)biphenyl as the organic products, which are characterized by NMR spectroscopy. The solid product of the thermal reactions of 2b and 2c were characterized as the metallopolymers formulated as [Pt(PR′2)2]n (5b: R′ = tBu; 5c: R′ = Ph), based on the solid-state NMR and elemental analyses.  相似文献   

10.
Reactions of copper(I) halides with a series of thiosemicarbazones, namely, benzaldehyde thiosemicarbazone (R1R2CN–NH–C(S)–NH2, R1 = Ph, R2 = H; Hbtsc), 2-benzoylpyridine thiosemicarbazone (R1 = Ph, R2 = py; Hbpytsc), and acetone thiosemicarbazone (R1 = R2 = Me; Hactsc), in the presence of PPh3 has formed dimeric complexes, viz. sulfur bridged [Cu2(μ-S-Hbtsc)2Br2(PPh3)2]·2H2O (1), iodo-bridged [Cu2(μ-I)21-S-Hbtsc)2(PPh3)2] (2), and heterobridged [Cu23-S,N3-Hactsc)(η1-Br)(μ-Br)(PPh3)2] (3), as well as mononuclear complexes [CuX(η1-S-Hbpytsc)(PPh3)2]·CH3CN (X = Br, 4; Cl, 5). Complexes 1, 2, 4 and 5 involve thiosemicarbazone ligands in η1-S bonding mode while in compound 3, ligand acts in N3, S-chelation-cum-S-bridging mode (μ3-S,N3 mode). The intermolecular interactions such as, N2H?X, HN1H?X (X = S, Br, Cl), CH?π interactions lead to 2D networks. All the complexes have been characterized with the help of elemental analyses, IR, 1H, and 31P NMR spectroscopy, and single crystal X-ray crystallography. The role of a solvent in alteration of nuclearity and bonding modes of complexes has been highlighted.  相似文献   

11.
《Polyhedron》2005,24(16-17):2165-2172
Five new hydrogen-bonded solvated iron(II) complexes of pyrazolyl- and imidazolyl-based N,N-chelating ligands have been synthesised. Water to ligand-NH hydrogen-bonded bridges occur in the pseudo-dimeric complexes {cis-[Fe(pypzH)2(NCX)2]2(μ-OH2)(H2O)2} · H2O · MeOH (where X = S or Se), and in the chain complex {cis-[Fe(pypzH)2(NCS)2](μ-OH2)}n. A “half” spin-crossover (Tc = 125 K) was observed in the dimeric X = Se complex by means of magnetic measurements and no thermal hysteresis occurred between 4 and 300 K. The crystal structure at 123 K showed Fe–N distances consistent with the magnetism. Each Fe in the dimeric unit was structurally equivalent in the HS–LS state. Removal of the solvate molecules led to HS–HS behaviour over the temperature range 4–300 K. The pseudo-dimer with X = S also showed HS–HS behaviour as did the monomeric analogue cis-[Fe(pypzH)2(NCS)2]H2O and a structurally different methanol-bridged dimer {cis-[Fe(pyimH)2(NCS)2]2(μ-MeOH)2} · 2MeOH (pypzH = 2-(1H-pyrazol-3-yl)-pyridine; pyimH = 2-(1H-imidazol-2-yl)-pyridine).  相似文献   

12.
The metal–metal bond in [M2(CO)9{C(OEt)R}] (M = Mn (1), Re (2), R = 2-thienyl (a), 2-bithienyl (b)) is readily cleaved with halogens to afford cis-[M(CO)4(X){C(OEt)R}] (M = Mn (3), X = I; M = Re (4), X = Br). In the binuclear manganese complex, the carbene ligand is found in an axial position due to steric reasons, whereas the electronically favoured equatorial position is found for the carbene ligands in the corresponding rhenium complexes and in [Mn2(CO)9{C(NH2)thienyl}] (5a), containing a sterically less demanding NH2-substituent.  相似文献   

13.
《Polyhedron》2005,24(16-17):2269-2273
Two ion-pair compounds, consisting of 1-(4′-R-benzyl)pyridinium ([RBzPy]+, R = NO2 (1) and Br (2)) and [Ni(dmit)2] (dmit2− = 2-thioxo-1,3-dithion-4,5-dithiolato), have been synthesized and structurally characterized. The anions of [Ni(dmit)2] stack into dimers, which further construct into two-leg ladder through terminal S⋯S interactions in 1, lateral S⋯S interactions in 2. The weak H-bonding interactions of C–H⋯S were observed in 2, while only weak van de Waals interactions between anion and cations in 1. The magnetic susceptibilities measured in 2–300 K indicate AFM exchange interaction domination both two compounds. A peculiar magnetic transition at ∼100 K was observed in 1. An AFM ordering below ∼11 K was found in 2, and the best fit to magnetic susceptibility above 45 K in this compound, using a dimer model with s = 1/2, give rise to Δ/kB = 36.1 K, zJ = −0.91 K, C = 3.2 × 10−3 emu K mol−1 and χ0 = −4.0 × 10−6 emu mol−1 with g of 2.0 fixed.  相似文献   

14.
Dinuclear ruthenium(I,I) carboxylate complexes [Ru2(CO)4(μ-OOCR)2]n (R = CH3 (1a), C3H7 (1b), H (1c), CF3 (1d)) and 2-pyridonate complex [Ru2(CO)4(μ-2-pyridonate)2]n (3) catalyze efficiently the cyclopropanation of alkenes with methyl diazoacetate. High yields are obtained with terminal nucleophilic alkenes (styrene, ethyl vinyl ether, α-methylstyrene), medium yields with 1-hexene, cyclohexene, 4,5-dihydrofuran and 2-methyl-2-butene. The E-selectivity of the cyclopropanes obtained from the monosubstituted alkenes and the cycloalkenes decreases in the order 1b > 1a > 1d > 1c. The cyclopropanation of 2-methyl-2-butene is highly syn-selective. Several complexes of the type [Ru2(CO)4(μ-L1)2]2 (4) and (5), [Ru2(CO)4(μ-L1)2L2] (L2 = CH3OH, PPh3) (6)–(9) and [Ru2(CO)4(CH3CN)2(μ-L1)2] (10) and (11), where L1 is a 6-chloro- or 6-bromo-2-pyridonate ligand, are also efficient catalysts. Compared with catalyst 3, a halogen substituent at the pyridonate ligand affects the diastereoselectivity of cyclopropanation only slightly.  相似文献   

15.
The intramolecularly donor-stabilized silenes ArR1SiC(SiMe3)2 (3ad) (3a: R1 = Me; 3b: R1 = t-Bu; 3c: R1 = Ph; 3d: R1 = SiMe3; Ar = 2,6-(Me2NCH2)2C6H3) were prepared by treatment of the (dichloromethyl)oligosilanes (Me3Si)2R1Si–CHCl2 (1ad), with 2,6-bis(dimethylaminomethyl)phenyllithium (molar ratio 1:2). For 3c and 3d, X-ray structural analyses were performed indicating that only one dimethylamino group of the tridentate ligand is coordinated to the electrophilic silene silicon atoms, i.e., the central silicon atoms are tetracoordinated. The N  Si donation leads to pyramidalization at the silene silicon atoms; the configuration at the silene carbon atoms is planar. For a chemical characterization 3a and 3c were treated with water to give the silanols ArR1Si(OH)–CH(SiMe3)2 (5a,c). Studies of the reactions of 3a and 3c with benzaldehyde, 4-chlorobenzaldehyde or 4-methoxybenzaldehyde, respectively, revealed an unexpected reaction path leading to the substituted 2-oxa-1-sila-1,2,3,4-tetrahydronaphthalenes 12a, 12c, 13 and 14. Both 12a and 12c were structurally characterized by X-ray analyses. The formation of these six-membered cyclic compounds, which is discussed in detail, gives support to a dipolar mechanism for the general reaction of silenes with carbonyl derivatives.  相似文献   

16.
Various chiral ligands bearing phosphorus or nitrogen donor atoms were obtained in a straightforward manner starting from trans-(2R,3R)-diphenylcyclopropane-1,1-dimethanol as a key structure. These chiral ligands were tested and compared in palladium(0)-catalyzed asymmetric allylic alkylation reactions (up to 71% ee) and rhodium(I)-catalyzed asymmetric hydrogenations (up to 88% ee). Moreover, in the asymmetric allylic alkylation, we observed excellent activity with a diphosphinite ligand (TOF = 600 mol 17 × [mol Pd × h)?1].  相似文献   

17.
Two new copper(II) complexes, [Cu2(L1)2](ClO4)2 (1) and [Cu(L2)(ClO4)] (2), of the highly unsymmetrical tetradentate (N3O) Schiff base ligands HL1 and HL2 (where HL1 = N-(2-hydroxyacetophenone)-bis-3-aminopropylamine and HL2 = N-(salicyldehydine)-bis-3-aminopropylamine) have been synthesised using a template method. Their single crystal X-ray structures show that in complex 1 two independent copper(II) centers are doubly bridged through phenoxo-O atoms (O1A and O1B) of the two ligands and each copper atom is five-coordinated with a distorted square pyramidal geometry. The asymmetric unit of complex 2 consists of two crystallographically independent N-(salicylidene)-bis(aminopropyl)amine-copper(II) molecules, A and B, with similar square pyramidal geometries. Cryomagnetic susceptibility measurements (5–300 K) on complex 1 reveal a distinct antiferromagnetic interaction with J = ?23.6 cm?1, which is substantiated by a DFT calculation (J = ?27.6 cm?1) using the B3LYP functional. Complex 1, immobilized over highly ordered hexagonal mesoporous silica, shows moderate catalytic activity for the epoxidation of cyclohexene and styrene in the presence of TBHP as an oxidant.  相似文献   

18.
《Polyhedron》2005,24(16-17):2242-2249
Two heterobimetallic coordination polymers, [Cu(2,4-pydc)2Mn(H2O)4]x (1) and [Cu(2,5-pydc)2Mn(H2O)2]x · 4xH2O (2), have been synthesized and structurally characterized by single crystal X-ray diffraction. Both compounds have extended 2-D sheet structures. In 1 the copper centers are linked in chains by double ligand bridges and these chains are cross-linked through the manganese coordination spheres and O–C–O bridges to form polymeric sheets. In 2 separate O–C–O bridged Cu and Mn chains are connected in an alternating array by additional ligand bridging to generate the overall 2-D structure. Analysis of magnetic data of 1 reveals that ferromagnetic exchange between the O–C–O bridged copper and manganese centers dominates the magnetic properties of this system. The magnetic data for 2 fit well to a model incorporating antiferromagnetic exchange in independent S = 1/2 and S = 5/2 linear chains with J(Cu) = −0.073 cm−1 and J(Mn) = −0.32 cm−1. Unlike the situation in 1, there is no evidence for heterometallic exchange. In both 1 and 2 the significant exchange occurs via O–C–O bridges. To study the effect of thermal dehydration on the magnetic properties of these systems, the compounds Cu(2,4-pydc)2Mn · H2O (1d) and Cu(2,5-pydc)2Mn · H2O (2d) were synthesized and studied.  相似文献   

19.
The reaction of organoaluminum compounds containing O,C,O or N,C,N chelating (so called pincer) ligands [2,6-(YCH2)2C6H3]AliBu2 (Y = MeO 1, tBuO 2, Me2N 3) with R3SnOH (R = Ph or Me) gives tetraorganotin complexes [2,6-(YCH2)2C6H3]SnR3 (Y = MeO, R = Ph 4, Y = MeO, R = Me 5; Y = tBuO, R = Ph 6, Y = tBuO, R = Me 7; Y = Me2N, R = Ph 8, Y = Me2N, R = Me 9) as the result of migration of O,C,O or N,C,N pincer ligands from aluminum to tin atom. Reaction of 1 and 2 with (nBu3Sn)2O proceeded in similar fashion resulting in 10 and 11 ([2,6-(YCH2)2C6H3]SnnBu3, Y = MeO 10; Y = tBuO 11) in mixture with nBu3SniBu. The reaction 1 and 3 with 2 equiv. of Ph3SiOH followed another reaction path and ([2,6-(YCH2)2C6H3]Al(OSiPh3)2, Y = MeO 12, Me2N 13) were observed as the products of alkane elimination. The organotin derivatives 411 were characterized by the help of elemental analysis, ESI-MS technique, 1H, 13C, 119Sn NMR spectroscopy and in the case 6 and 8 by single crystal X-ray diffraction (XRD). Compounds 12 and 13 were identified using elemental analysis,1H, 13C, 29Si NMR and IR spectroscopy.  相似文献   

20.
Reaction between a chiral imidazole–amine precursor derived from (1R,2R)-trans-diaminocyclohexane and P1Cl (where P1 = PPh2, P(1,3,5-Me3C6H3)2, P(2,2′-O,O′-(1,1′-biphenyl), P((R)-(2,2′-O,O′-(1,1′-binaphthyl))) and P((S)-(2,2′-O,O′-(1,1′-binaphthyl)))) followed by RX (where R = nPr, iPr, CHPh2, X = Br; R = iPr, X = I), respectively, gives a selection of chiral imidazolium–phosphine compounds. Deprotonation of the imidazolium salt gives the corresponding NHC–P ligands that can be used in metal-mediated asymmetric catalytic applications. Catalytic reactions show that NHC–P ligands give a significantly greater rate of reaction for a palladium catalysed allylic substitution reaction in comparison to analogous di-NHC or NHC–imine ligands and that NHC–P hybrids are also effective for iridium catalysed transfer hydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号