首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tubular array of TiO2 nanotubes on Ti matrix was used as a support for Ag or Cu sputter‐deposited layers intended for surface‐enhanced Raman scattering (SERS) investigations. The composite samples of Ag/TiO2–nanotube/Ti and Cu/TiO2–nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) [and scanning Auger microscopy (SAM)] to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured after it had been adsorbed on the TiO2–nanotube/Ti substrates covered with thin Ag or Cu deposit as well as on the bulk electrochemically roughened Ag or Cu reference substrates. It was found that the SERS spectra measured for pyridine adsorbed on the bulk silver substrate were significantly different than the spectra measured on the TiO2–nanotube/Ti substrates covered the Ag layer. The spectra measured for pyridine adsorbed on the Ag/TiO2–nanotube/Ti suggest that on the surface of such a composite substrate there are many Lewis acidic sites. Spectra typical for pyridine adsorbed on acidic sites were observed even after deposition of a relatively thick silver layer (e.g. an Ag layer with an average thickness of 80 nm) on the TiO2–nanotube/Ti support. Our findings suggest that TiO2–nanotube/Ti support is a promising substrate for the preparation of metallic nano‐clusters on a support containing acidic active sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Tubular arrays of TiO2 nanotubes (ranging in diameter from 40 to 110 nm) on a Ti substrate were used as a support for Ag, Au or Cu deposits obtained by the sputter deposition technique, where the amount of metal varied from 0.01 to 0.2 mg/cm2. Those composite supports were intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from −0.2 down to −1.2 V after the pyridine had been adsorbed on the metal-covered TiO2 nanotube/Ti substrates. In addition, SERS spectra on a bulk standard activated Ag, Au and Cu substrates were also measured. The SERS activity of the composite samples was strongly dependent on the amount of metal deposit, e.g. at and above 0.06 mg Ag/cm2, the intensity of SERS signal was even higher than that for the Ag reference substrate. The high activity of these composites is mainly a result of their specific morphology. The high SERS sensitivity on the surface morphology of the substrate made it possible to monitor very small temporal changes in the Ag metal clusters. This rearrangement was not detectable with microscopic (SEM) or microanalytical (AES) methods. The SERS activity of Au or Cu clusters was distinctly lower than those of Ag. The spectral differences exhibited by the three kinds of composites as compared to the reference metal samples are discussed.  相似文献   

3.
Silver nanoparticles deposited on various ‘inert’ porous materials (mainly Al2O3 and TiO2) are often used as substrates for surface‐enhanced Raman scattering (SERS) measurements. In this study, we used the sputter deposition technique to cover tubular arrays of Al2O3 and TiO2 with Ag nanoparticles. Raman spectra of pyridine (as a probe molecule) and of two selected dyes (5‐(4‐dimethylaminobenzylidene)rhodanine and 5‐(4‐(dimethylamino)benzylidene)‐3‐(3‐methoxypropyl)rhodanine) adsorbed on fabricated Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al substrates were measured. We found that the SERS spectra of pyridine adsorbed on Ag nanoparticles deposited on an Al2O3‐n/Al substrate are distinctly different from those measured for an Ag/TiO2‐n/Ti composite. Similar effects were observed for dyes adsorbed on the surface of both composites. The spectral differences between two kinds of composites (Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al) are discussed in terms of (1) the modified electronic structure of the Ag nanoparticles due to their interaction with different substrate materials and (2) the different atomic topology of the metal particles thus deposited on the surfaces of the substrates. Composite samples were also studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
SERS spectra of pyridine adsorbed on various kinds of vacuum evaporated (10?5 Torr) metals (Ag, Au, Ni, Pd, Pt, Ti and Co) and on single crystals of semiconductors (NiO and TiO2) were obtained at room temperature. The peak frequencies as shifted from those of free pyridine are assigned to the bands of N-bonded pyridine (chemisorbed pyridine). The λ0 dependence varied remarkably from metal to metal. The peak frequency and the λ0 dependence for the pyridine adsorbed on NiO or TiO2 are in good agreement with those on Ni or Ti, respectively, showing the chemical bonding between the N atom and the Ni or Ti atom. The effects of background and of polarization on the SERS spectra were examined in detail, thus revealing the orientation of the adsorbed molecules. Carbon monoxide chemisorbed on Ag was measured by infrared specular reflection as well as by SERS. The results indicate that chemisorbed species on the same substrate do not always give SERS. The SERS spectra obtained are well interpreted as being due to the mechanism of resonance Raman scattering via charge transfer excitation of the adsorbent-adsorbate interaction.  相似文献   

5.
Highly ordered TiO2/Ti nanotube arrays were fabricated by anodic oxidation method in 0.5 wt% HF. Using prepared TiO2/Ti nanotube arrays deposited Ni nanoparticles as substrate, high quality diamond-like carbon nanorods (DLCNRs) were synthesized by a conventional method of chemical vapor deposition at 750 °C in nitrogen atmosphere. DLCNRs were analyzed by filed emission scanning electron microscopy and Raman spectrometer. It is very interesting that DLCNRs possess pagoda shape with the length of 3–10 μm. Raman spectra show two strong peaks about 1332 cm−1 and 1598 cm−1, indicating the formation of diamond-like carbon. The field emission measurements suggest that DLCNRs/TiO2/Ti has excellent field emission properties, a low turn-on field about 3.0 V/μm, no evident decay at 3.4 mA/cm2 in 480 min.  相似文献   

6.
We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications.
Graphical abstract N-doped TiO2 nanoparticles were synthesized. Whereafter, N-TiO2/MBA/Ag nanocomplexes were prepared and served as a SERS-active substrate. An appropriate amount of N doping can enhance the SERS properties of TiO2 SERS-active substrate by nitrogen substitution doping. The nonmetal doping TiO2-to-molecule CT mechanism and the synergistic effect in N-TiO2/MBA/Ag charge transfer systems have been studied.
  相似文献   

7.
Oriented single crystalline titanium dioxide (TiO2) nano-pillar arrays were directly synthesized on the Ti plate in tetramethylammonium hydroxide (TMAOH) solution by one-pot hydrothermal method. The samples were characterized respectively by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Results showed that the TiO2 nano-pillar with a tetrahydral bipyramidal tip grew vertically on the titanium substrate. HRTEM and Raman results confirmed that the TiO2 nano-pillar arrays were single crystalline anatase. The controls of morphology, size, and orientation of the nano-pillar could be achieved by varying the solution concentration and hydrothermal temperature. Furthermore, the special morphology of the TiO2 nano-pillar arrays was caused by the selectively absorption of the tetramethylammonium (TMA) through hydrogen bonds on the lattice planes parallel to (0 0 1) of anatase TiO2. Less grain boundaries and direct electrical pathway for electron transferring were crucial for the superior photoelectrochemical properties of the single anatase TiO2 nano-pillar arrays. This approach provides a facile in situ method to synthesize TiO2 nano-pillar arrays with a special morphology on titanium substrate.  相似文献   

8.
Ag/TiO2 sol with narrow particle size distribution was synthesized using TiCl4 as the starting material. TiCl4 was converted to Ti(OH)4 gel. The Ag/TiO2 sol was prepared by a process where H2O2 was added and then heated at 90–97 °C. After condensation reaction and crystallization, a transparent sol with suspended Ag/TiO2 was formed. Ag/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, contact angle analysis, and X-ray photoelectron spectroscopy. The photocatalytic properties of Ag/TiO2 film were evaluated by degradation of methylene blue in aqueous solution under UV light irradiation. The suspended Ag/TiO2 particles were rhombus primary particles with the major axis ca. 40 nm and the minor axis ca. 10 nm. Ag nanoparticles were well dispersed on TiO2 and the particle size was only 1–2 nm. Ag could restrain the recombination of photo-generated electrons and holes effectively. Transparent thin films could be obtained through dip-coating glass substrate in the sol. The thin film had strong hydrophilicity after being illuminated by UV light. Ag/TiO2 film showed a significant increase in photocatalytic activity compared to the TiO2 film. The high amount of surface hydroxyls on Ag/TiO2 film also played an important role in its photocatalytic activity.  相似文献   

9.
The adsorption of pyridine (py) on Fe, Co, Ni and Ag electrodes was studied using surface‐enhanced Raman scattering (SERS) to gain insight into the nature of the adsorbed species. The wavenumber values and relative intensities of the SERS bands were compared to the normal Raman spectrum of the chemically prepared transition metal complexes. Raman spectra of model clusters M4(py) (four metal atoms bonded to one py moiety) and M4(α‐pyridil) where M = Ag, Fe, Co or Ni were calculated by density functional theory (DFT) and used to interpret the experimental SERS results. The similarity of the calculated M4(py) spectra with the experimental SERS spectra confirm the molecular adsorption of py on the surface of the metallic electrodes. All these results exclude the formation of adsorbed α‐pyridil species, as suggested previously. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Ag nanoparticles were exclusively deposited inside the pores of the porous anodic alumina (PAA) template through the deposition cycle including the incubation and the subsequent reduction of Ag(NH3) . Both the density and size of the produced Ag nanoparticles increased as the deposition cycle number increased. A field‐emission scanning electron microscopeand an ultraviolet‐visible spectrometer were applied, respectively, to study the morphology and the extinction spectra of the Ag nanoparticles. The optimum deposition number was found from the scanning electron microscope (SEM) analysis. Surface enhanced Raman scattering (SERS) spectra of p‐aminothiophenol recorded on the Ag–PAA substrates prepared under increasing number of deposition cycles, manifested an enlarging trend of peak intensity. A point‐by‐point SERS mapping of p‐aminothiophenol on the Ag–PAA substrate was acquired to characterise the homogeneity of the substrate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Er 3+-doped TiO 2-SiO 2 powders are prepared by the sol-gel method,and they are characterized by high resolution transmission electron microscopy (HR-TEM),X-ray diffraction (XRD) spectra,and Raman spectra of the samples.It is shown that the TiO 2 nanocrystals are surrounded by an SiO 2 glass matrix.The photoluminescence (PL) spectra are recorded at room temperature.A strong green luminescence and less intense red emission are observed in the samples when they are excited at 325 nm.The intensity of the emission,which is related to the defect states,is strongest at the annealing temperature of 800 C.The PL intensity of Er 3+ ions increases with increasing Ti/Si ratio due to energy transfer between nano-TiO 2 particles and Er 3+ ions.  相似文献   

12.
Highly ordered titanium oxide (TiO2) nanotubes were prepared by electrolytic anodization of titanium electrodes. Morphological evolution and phase transformations of TiO2 nanotubes on a Ti substrate and that of freestanding TiO2 membranes during the calcinations process were studied by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction microscopy. The detailed results and mechanisms on the morphology and crystalline structure were presented. Our results show that a compact layer exists between the tubular layer and Ti substrate at 600 °C, and the length of the nanotubes shortens dramatically at 750 °C. The freestanding membranes have many particles on their tubes during calcinations from 450 to 900 °C. The TiO2 nanotubes on the Ti substrate transform to rutile crystals at 600 °C, while the freestanding TiO2 membranes retain an anatase crystal with increasing temperature to 800 °C. The photocatalytic activity of TiO2 nanotubes on a Ti substrate annealed at different temperatures was investigated by the degradation of methyl orange in aqueous solution under UV light irradiation. Due to the anatase crystals in the tubular layer and rutile crystals in the compact layer, TiO2 nanotubes annealed at 450 °C with pure anatase crystals have a better photocatalytic activity than those annealed at 600 °C or 750 °C.  相似文献   

13.
Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl4 solution containing TiO2 colloid and accompanied by the TiO2 particles, were deposited on the substrate surface. The film consisting of Au/TiO2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO2 film was also discussed.  相似文献   

14.
We report on investigations upon a surface‐enhanced Raman scattering (SERS) substrate produced from a two‐dimensional single‐walled carbon nanotube (SWNT) network decorated with Ag nanoparticles. Using the strong and unique Raman spectrum of SWNTs as a reference, the SWNT/Ag nanostructure can be considered to provide two regions: one with an ultrasensitive SERS response for single‐molecule SERS (SMSERS) study; and another with uniform SERS enhancement over an area of several square millimeters for general SERS measurements. We report the appearance of an anomalous Raman feature at around 2180 cm−1 in the high‐sensitivity region which exhibits the characteristics of SMSERS. The SERS performance of the uniform area was characterized using pyridine vapor adsorbed onto the substrate. The presence of the SWNT/Ag nanostructure enhanced the Raman intensity by over seven orders of magnitude, a factor comparable to or exceeding that obtained on SERS substrates reported by other groups. The results indicate great potential to produce highly sensitive, uniform SERS substrates via further fine‐tuning of the nanostructure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, Ag nanoparticles (NPs) were deposited on patterned TiO2 nanotube films through pulse‐current (PC) electrodeposition, and as a result patterned Ag NPs films were achieved. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X‐ray diffraction (XRD) were used, respectively, to study the morphology, uniformity, and phase structure of the patterned Ag NP films. The size and density of the as‐deposited Ag NPs could be controlled by changing the deposition charge density, and it was found that the patterned Ag NP films produced under a charge density of 2.0 C cm−2 gave intense UV–vis and Raman peaks. Two‐dimensional surface‐enhanced Raman scattering (SERS) mapping of rhodamine 6G (R6G) on the patterned Ag NP films demonstrated a high‐throughput, localized molecular adsorption and micropatterned SERS effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Surface‐enhanced Raman scattering (SERS) measurements were carried out on stilbazolium merocyanine dye in methanol and pyridine solvents. Both solutions were measured in a series of concentrations covering a range of 5 × 10−5 M to 5 × 10−8 M . In these measurements, Ag and Au colloids were used, and the results have shown that Ag colloids yield better enhancement in the Raman spectra of this dye. Moreover, the effect of adding NaCl solution to the SERS samples was also studied. All measurements were carried out using the state‐of‐the‐art ChiralRaman instrument, which utilizes a 532 nm laser source. We report here on the success of using SERS to obtain Raman spectra of merocyanine dye at very low concentrations in an attempt to find a new approach that can be used for further investigations of the dye. The SERS spectra are reported here, and the results from different solutions, colloids, concentrations and pH values are compared. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
夏峥嵘  李荣青 《光子学报》2012,41(2):166-169
利用新合成的复合纳米结构银/二氧化钛核壳纳米颗粒,研究了金属银纳米颗粒对碲化镉纳米晶层荧光的增强情况.结果表明,这种新型复合金属纳米结构能极大地增强发光纳米晶层的荧光强度.银/二氧化钛核壳纳米颗粒是以水合肼、硝酸银和四异丙氧基钛为原材料,利用胶体化学法在水溶液中合成.透射电子显微镜图片表明这种新合成的银/二氧化钛纳米材料基本上呈球形,有较为明显的核壳结构,中间黑色的核是银纳米颗粒,外层颜色较浅部分是二氧化钛壳层.另外,包裹二氧化钛壳层后,银纳米颗粒的表面等离子吸收带从409 nm红移至430 nm,也证实了这种新型核壳纳米材料的形成.将此合成方法得到的银/二氧化钛纳米颗粒和碲化镉纳米晶用旋转涂覆方法进行直接组合后,得到了银纳米颗粒对碲化镉纳米晶荧光的明显增强,并对其增强的物理过程进行了讨论.这种能够增强荧光团发光的新型复合银纳米结构将在发光器件、荧光成像、生物探测等方面具有一定的应用价值.  相似文献   

18.
The surface‐enhanced Raman scattering substrate of Ag–Ag nanocap arrays are prepared by depositing Ag film onto two‐dimensional (2D) polystyrene colloidal nanosphere templates. When the original colloidal arrays are used as the substrate for Ag deposition, surface‐enhanced Raman scattering (SERS) enhancements show the strong size‐dependence behaviours. When O2‐plasma etched 2D polystyrene templates are used as the substrate for Ag deposition to form nanogaps, the gap sizes between adjacent Ag nanocaps from 5 to 20 nm generate even greater SERS enhancements. When SiO2 coverage is deposited to isolate the Ag nanocaps from the neighbours, the SERS signals are enhanced more. The significant SERS effects are due to the coupling between Ag nanocaps controlled by the distance, which enhances the local electric‐field intensity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Polyvinyl alcohol (PVA)‐protected silver nanoarchitecture (PVA Ag nanofilm) on the surface of the glass substrate was prepared by using electrostatic self‐assembly at a proper voltage. The two‐dimensional morphology of the PVA Ag nanofilm has been examined by scanning electron microscopy (SEM). The surface‐enhanced Raman scattering (SERS) spectra of human serum (HS) on PVA Ag nanofilms were recorded. The results show that the Raman scattering of HS can be enhanced efficiently based on these PVA Ag nanofilms. However, it also can be seen that the effect of sodium citrate (SC) acting as anticoagulant on the SERS spectrum of HS is unnegligible, which has not been discussed adequately in the previous reports. To discuss the effect of SC on the SERS spectrum of HS, we have studied the normal Raman spectra of solid SC and the SERS spectra of 1.0 × 10−3 mol/l aqueous solution of SC adsorbed on the PVA–Ag nanofilms. Meanwhile, Raman wavenumbers of the SC molecule were calculated by using the method of DFT‐B3LYP/6‐31G*, and the dominant assignations of the calculated wavenumbers were performed. It was found that the density functional theory (DFT) calculation of SC Raman spectrum matches well with the experimental results. With the perfect reproducibility and high SERS activity, this method will be useful in the development of HS detection methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Silver nanoparticles (Ag NPs) enjoy a reputation as an ultrasensitive substrate for surface‐enhanced Raman spectroscopy (SERS). However, large‐scale synthesis of Ag NPs in a controlled manner is a challenging task for a long period of time. Here, we reported a simple seed‐mediated method to synthesize Ag NPs with controllable sizes from 50 to 300 nm, which were characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. SERS spectra of Rhodamine 6G (R6G) from the as‐prepared Ag NPs substrates indicate that the enhancement capability of Ag NPs varies with different excitation wavelengths. The Ag NPs with average sizes of ~150, ~175, and ~225 nm show the highest SERS activities for 532, 633, and 785‐nm excitation, respectively. Significantly, 150‐nm Ag NPs exhibit an enhancement factor exceeding 108 for pyridine (Py) molecules in electrochemical SERS (EC‐SERS) measurements. Furthermore, finite‐difference time‐domain (FDTD) calculation is employed to explain the size‐dependent SERS activity. Finally, the potential of the as‐prepared SERS substrates is demonstrated with the detection of malachite green. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号