首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
There is a non-linear and covariant electromagnetic analogy for gravity, in which the full Bianchi identities are Maxwell-type equations for the free gravitational field, encoded in the Weyl tensor. This tensor gravito-electromagnetism is based on a covariant generalization of spatial vector algebra and calculus to spatial tensor fields, and includes all non-linear effects from the gravitational field and matter sources. The non-linear vacuum Bianchi equations are invariant under spatial duality rotation of the gravito-electric and gravito-magnetic tensor fields. The super-energy density and super-Poynting vector of the gravitational field are natural duality invariants, and satisfy a super-energy conservation equation.  相似文献   

2.
It is shown that when a four dimensional source-free Einstein-Maxwell space-time admits a group of motions leaving the electromagnetic field unchanged a linear relation exists between two Maxwell fields and the covariant derivative of a Killing vector. For the case in which the two electromagnetic fields are related by a duality rotation it is seen that a purely geometric form of Einstein's equations may be derived. The behaviour of these under a class of quasi conformal transformations of the metric is shown to lead to Harrison's theorem.  相似文献   

3.
To get a synthesis of causal faster-than-light effects and signals that do not propagate faster than light by using local, covariant, linear equations of motion, we propose the following hypothesis. Free fields that propagate signals according to the Klein-Gordon, Dirac, Proca or Maxwell equations, are actually describing only smoothed-out, average properties of underlying causal transport processes of point like entities with arbitrary four-momenta, the states of which are described by a scalar, spinor or four-vector field that satisfies a local, covariant, linear transport equation. An example of such a linear, causal, covariant transport process is shown to display causal faster-than-light effects, to propagate signals not faster than light, and to contain the Klein-Gordon equation as a limiting case. An analogous transport model displays causal, four-vector, faster-than-light effects, and also distinctive four-vector, long-range and short-range effects that do not propagate faster than light.  相似文献   

4.
This article offers a new approach for analysing the dynamic behaviour of distributions of charged particles in an electromagnetic field. After discussing the limitations inherent in the Lorentz-Dirac equation for a single point particle a simple model is proposed for a charged continuum interacting self-consistently with the Maxwell field in vacuo. The model is developed using intrinsic tensor field theory and exploits to the full the symmetry and light-cone structure of Minkowski spacetime. This permits the construction of a regular stress-energy tensor whose vanishing divergence determines a system of non-linear partial differential equations for the velocity and self-fields of accelerated charge. Within this covariant framework a particular perturbation scheme is motivated by an exact class of solutions to this system describing the evolution of a charged fluid under the combined effects of both self and external electromagnetic fields. The scheme yields an asymptotic approximation in terms of inhomogeneous linear equations for the self-consistent Maxwell field, charge current and time-like velocity field of the charged fluid and is defined as an ultra-relativistic configuration. To facilitate comparisons with existing accounts of beam dynamics an appendix translates the tensor formulation of the perturbation scheme into the language involving electric and magnetic fields observed in a laboratory (inertial) frame.  相似文献   

5.
A new Lagrangian theory of gravitation in which the metric and the arbitrary affine connection are regarded as independent field variables has been considered. Making use of the pure geometrical objects only from the variational principle the empty field equations are derived. It is shown that the metric obeys the ordinary Einstein equations of general relativity. However, the covariant derivative of the metric tensor does not vanish, so that the vector's length is generally nonintegrable under the parallel displacement. The torsion trace vector turns out to be the natural dynamical variable, satisfying the Maxwell-like equations with tensor of homothetic curvature as the Maxwell tensor. The equations of motion are explored; they are shown to be identical to the motion of electric charge under the Lorentz force. The conservation laws are discussed.  相似文献   

6.
A canonical relativistic formulation is introduced to quantize electromagnetic field in the presence of a polarizable and magnetizable moving medium. The medium is modeled by a continuum of the second rank antisymmetric tensors in a phenomenological way. The covariant wave equation for the vector potential and the covariant constitutive equation of the medium are obtained as the Euler-Lagrange equations using the Lagrangian of the total system. A fourth rank tensor which couples the electromagnetic field and the medium is introduced. The susceptibility tensor of the medium is obtained in terms of this coupling tensor. The noise polarization tensor is calculated in terms of both the coupling tensor and the ladder operators of the tensors modeling the medium.  相似文献   

7.
A convention with regard to geometry, accepting nonholonomic aether motion and coordinate-dependent units, is always valid as an alternative to Einstein's convention. Choosing flat spacetime, Newtonian gravitation is extended, step by step, until equations closely analogous to those of Einstein's theory are obtained. The first step, demanded by considerations of inertia, is the introduction of a vector potential. Treating the electromagnetic and gravitational fields as real and imaginary components of a complex field (gravitational mass being treated as imaginary charge), the Maxwell stress-momentum-energy tensor for the complex field is then used as the source for both fields. The spherically symmetric solution of these unified field equations describes the electron. Third, effects arising from motion of aether fluid with respect to the artificial reference systems of flat spacetime are included. On the grounds that attraction between likes and repulsion between likes are, a priori, equally possible, it is suggested that gravitational and electromagnetic phenomena should enjoy equal status. This can be achieved on the scale of an infinite cosmos by introducing a hierarchy of isolated systems, each of which is a universe when viewed internally and an elementary particle when viewed externally. A universe (defined by the Hubble radius), an electron, and a neutrino are three consecutive isolated systems of the hierarchy. Implied is the existence of antiuniverses where gravitational mass has opposite sign and antimatter predominates. Remarkable relationships between physical constants emerge.  相似文献   

8.
By means of a Clebsch representation which differs from that previously applied to electromagnetic field theory it is shown that Maxwell's equations are derivable from a variational principle. In contrast to the standard approach, the Hamiltonian complex associated with this principle is identical with the generally accepted energy-momentum tensor of the fields. In addition, the Clebsch representation of a contravariant vector field makes it possible to consistently construct a field theory based upon a direction-dependent Lagrangian density (it is this kind of Lagrangian density that may arise when developing the Finslerian extension of general relativity). The corresponding field equations are proved to be independent of any gauge of Clebsch potentials. The law of energy-momentum conservation of the field appears to be covariant and integrable in a rather wide class of direction-dependent Lagrangian densities.  相似文献   

9.
10.
The vanishing of the divergence of the matter stress-energy tensor for General Relativity is a particular case of a general identity, which follows from the covariance of the matter Lagrangian in much the same way as (generalized) Bianchi identities follow from the covariance of the purely gravitational Lagrangian. This identity, holding for any covariant theory of gravitating matter, relates the divergence of the stress tensor with a combination of the field equations and their derivatives. One could thus wonder if, according to a recent suggestion [1], the energy-momentum tensor for gravitating fields can be computed through a suitable rearrangement of the matter field equations, without relying on the variational definition. We show that this can be done only in particular cases, while in general it leads to ambiguities and possibly to wrong results. Moreover, in nontrivial cases the computations turn out to be more difficult than the standard variational technique.  相似文献   

11.
As is well known the simplest way of formulating the equations for the Yang-Mills gauge fields consists in taking the Lagrangian to be quadratic in the gauge tensor [1 - 5], whereas the application of such an approach to the gravitational field yields equations which are of essentially more complicated structure than the Einstein equations. On the other hand, in the gravitational field theory the Lagrangian can be constructed to be of forms which may be both quadratic and linear in the curvature tensor, whereas the latter possibility is absent in the current gauge field theories. In previous work [6] it has been shown that the Finslerian structure of the space-time gives rise to certain gauge fields provided that the internal symmetries may be regarded as symmetries of a three-dimensional Riemannian space. Continuing this work we show that appropriate equations for these gauge fields can be formulated in both ways, namely on the basis of the quadratic Lagrangian or, if a relevant generalization of the Palatini method is applied, on the basis of a Lagrangian linear in the gauge field strength tensor. The latter possibility proves to result in equations which are similar to the Einstein equations, a distinction being that the Finslerian Cartan curvature tensor rather than the Riemann curvature tensor enters the equations.  相似文献   

12.
In this paper, we construct a unified covariant formalism for the classical gauge fields in an equiaffine space. The gauge transformation groups are the Lie groups, induced according to the third Lie theorem by the structure constants. As a result of the gauge transformations, one set of geometric objects is replaced by another. It is confirmed that the differential conservation laws in the equiaffine spaces are a result of the equations of the gauge fields. The particular case when the gauge transformation group is a four-parameter group and is abelian is distinguished. This group corresponds to gauge fields that are induced by an energy-momentum tensor and, which, as a result, are called gravitational fields. As a particular case of the equations of the given gravitational fields, we obtain Einstein's equations with the help of a Lagrangian, which is quadratic with respect to the gravitational field intensities. In concluding, we note the possibility of describing gauge fields, corresponding to nongravitational interactions of vector mesons with nonzero rest mass, without invoking the scalar Higgs mesons. This possibility appears both as a result of the generalization of the Yang-Mills covariant derivative and as a result of including gravitational interactions in the general gauge field formalism.Translated from Izvestiya Vysshykh Uchebnykh Zavedenii, Fizika, No. 12, 47–51, December, 1981.  相似文献   

13.
Yakov Itin 《Annals of Physics》2012,327(2):359-375
A generally covariant four-dimensional representation of Maxwell’s electrodynamics in a generic material medium can be achieved straightforwardly in the metric-free formulation of electromagnetism. In this setup, the electromagnetic phenomena are described by two tensor fields, which satisfy Maxwell’s equations. A generic tensorial constitutive relation between these fields is an independent ingredient of the theory. By use of different constitutive relations (local and non-local, linear and non-linear, etc.), a wide area of applications can be covered. In the current paper, we present the jump conditions for the fields and for the energy–momentum tensor on an arbitrarily moving surface between two media. From the differential and integral Maxwell equations, we derive the covariant boundary conditions, which are independent of any metric and connection. These conditions include the covariantly defined surface current and are applicable to an arbitrarily moving smooth curved boundary surface. As an application of the presented jump formulas, we derive a Lorentzian type metric as a condition for existence of the wave front in isotropic media. This result holds for ordinary materials as well as for metamaterials with negative material constants.  相似文献   

14.
We consider a model of the state evolution of relativistic vector bosons, which includes both the dynamical equations for the particle four-velocity and the equations for the polarization four-vector evolution in the field of a nonlinear plane gravitational wave. In addition to the gravitational minimal coupling, tidal forces linear in curvature tensor are suggested to drive the particle state evolution. The exact solutions of the evolutionary equations are obtained. Birefringence and tidal deviations from the geodesic motion are discussed.  相似文献   

15.
We show that a conserved energy-momentum tensor for a system of classical fields with non-local interaction, as given in an Ansatz by Pauli, exists, if and only if the field equations are derivable from a Lagrangian. In contrast to the total momentum four-vector the tensor is not unique. By means of a model of classical fields it is shown that form factors vanishing for large values in momentum space can lead to arbitrary large negative energies. This will greatly restrict the possibility of introducing non-local interactions.  相似文献   

16.
We provide new exact solutions to the Einstein–Maxwell system of equations which are physically reasonable. The spacetime is static and spherically symmetric with a charged matter distribution. We utilise an equation of state which is quadratic relating the radial pressure to the energy density. Earlier models, with linear and quadratic equations of state, are shown to be contained in our general class of solutions. The new solutions to the Einstein–Maxwell are found in terms of elementary functions. A physical analysis of the matter and electromagnetic variables indicates that the model is well behaved and regular. In particular there is no singularity in the proper charge density at the stellar centre unlike earlier anisotropic models in the presence of the electromagnetic field.  相似文献   

17.
We discuss a field-theoretical approach based on general-relativistic variational principle to derive the covariant field equations and hydrodynamic equations of motion of baryonic matter governed by cosmological perturbations of dark matter and dark energy. The action depends on the gravitational and matter Lagrangian. The gravitational Lagrangian depends on the metric tensor and its first and second derivatives. The matter Lagrangian includes dark matter, dark energy and the ordinary baryonic matter which plays the role of a bare perturbation. The total Lagrangian is expanded in an asymptotic Taylor series around the background cosmological manifold defined as a solution of Einstein’s equations in the form of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric tensor. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the series expansion is gauge-invariant and all of them together form a basis for the successive post-Friedmannian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Friedmannian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background FLRW metric. The temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large scale inhomogeneities in these two components as those generated by the primordial cosmological perturbations with an effective matter density contrast δρ/ρ≤1δρ/ρ1. The small scale inhomogeneities are generated by the condensations of baryonic matter considered as the bare perturbations of the background manifold that admits δρ/ρ?1δρ/ρ?1. Mathematically, the large scale perturbations are given by the homogeneous solution of the linearized field equations while the small scale perturbations are described by a particular solution of these equations with the bare stress–energy tensor of the baryonic matter. We explicitly work out the covariant field equations of the successive post-Friedmannian approximations of Einstein’s equations in cosmology and derive equations of motion of large and small scale inhomogeneities of dark matter and dark energy. We apply these equations to derive the post-Friedmannian equations of motion of baryonic matter comprising stars, galaxies and their clusters.  相似文献   

18.
It is shown that: i) the Weyl tensor can be expressed in terms of the sum of a tensor and its double dual, where the tensor is constructed from the covariant derivatives of the Lanczos tensor, ii) a similar expression does not exist for the Riemann tensor in electromagnetic theory, iii) the electromagnetic field cannot be identified with the differential gauge freedom of the Lanczos tensor, iv) the symmetries of Einstein Maxwell theory and the Lanczos tensor do not prohibit the identification of the electromagnetic field with the algebraic gauge freedom of the Lanczos tensor, these symmetries require a differential equation relating the electromagnetic field tensor to the algebraic gauge vector and this is given.  相似文献   

19.
电磁场的复矢量表示   总被引:2,自引:2,他引:0  
许冰  严亮  刘丽华 《大学物理》2007,26(4):16-23
在麦克斯韦方程组及洛伦兹力密度公式基础上引入电磁场复矢量,讨论了电磁场普遍规律的新公式,包括对复矢量电磁场的建立,电荷守恒定律,能量守恒定律,电磁场矢势与标势,电磁场动量、能量、张量、相对论协变性等的研究,并和电动力学相比较,得出一些结论.  相似文献   

20.
In order to get to a geometrically based theory of gravitation and electromagnetism, a gauge covariant bimetric tetrad space-time is introduced. The Weylian connection vector is derived from the tetrads and it is identified with the electromagnetic potential vector. The formalism is simplified by the use of gauge-invariant quantities. The theory contains a contorsion tensor that is connected with spinning properties of matter. The electromagnetic field may be induced by conventional sources and by spinning matter. In absence of spinning matter, the equations are identical with those of the gauge-covariant bimetric theory.(23)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号