首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hui Chen  Zan Lin 《Analytical letters》2018,51(15):2362-2374
Black rice is one of the famous rare rice varieties in China. It is common to sell inferior black rice intentionally declared as famous brands due to economical motivation. There is an urgent need to develop an analytical method for untargeted identification of black rice. The present work focuses on exploring the feasibility of the untargeted identification of black rice by the combination of near-infrared (NIR) spectroscopy and data driven-based class modeling and variable selection. A total of 142 samples of three brands were collected and used for measurements. The samples of a specific class were used as the target class. Principal component analysis was applied for the preliminary analysis. The model-independent variable selection method, i.e., joint mutual information, was used for spectral compression. Only the 10 most informative variables were picked from original variables based on which an optimal class-model for the target class was constructed and validated by means of an external test set. As a result, the model achieved 100% of sensitivity and specificity. It can be concluded that NIR spectroscopy combined with one-class modeling is a feasible tool for the untargeted identification of black rice.  相似文献   

2.
In this work, different approaches for variable selection are studied in the context of near-infrared (NIR) multivariate calibration of textile. First, a model-based regression method is proposed. It consists in genetic algorithm optimisation combined with partial least squares regression (GA-PLS). The second approach is a relevance measure of spectral variables based on mutual information (MI), which can be performed independently of any given regression model. As MI makes no assumption on the relationship between X and Y, non-linear methods such as feed-forward artificial neural network (ANN) are thus encouraged for modelling in a prediction context (MI-ANN). GA-PLS and MI-ANN models are developed for NIR quantitative prediction of cotton content in cotton-viscose textile samples. The results are compared to full-spectrum (480 variables) PLS model (FS-PLS). The model requires 11 latent variables and yielded a 3.74% RMS prediction error in the range 0-100%. GA-PLS provides more robust model based on 120 variables and slightly enhanced prediction performance (3.44% RMS error). Considering MI variable selection procedure, great improvement can be obtained as 12 variables only are retained. On the basis of these variables, a 12 inputs ANN model is trained and the corresponding prediction error is 3.43% RMS error.  相似文献   

3.
Chen Y  Xie MY  Yan Y  Zhu SB  Nie SP  Li C  Wang YX  Gong XF 《Analytica chimica acta》2008,618(2):121-130
A rapid and nondestructive near infrared (NIR) method combined with chemometrics was used to discriminate Ganoderma lucidum according to cultivation area. Raw, first, and second derivative NIR spectra were compared to develop a robust classification rule. The chemical properties of G. lucidum samples were also investigated to find out the difference between samples from six varied origins. It could be found that the amount of polysaccharides and triterpenoid saponins in G. lucidum samples was considerably different based on cultivation area. These differences make NIR spectroscopic method viable. Principal component analysis (PCA), discriminant partial least-squares (DPLS) and discriminant analysis (DA) were applied to classify the geographical origins of those samples. The results showed that excellent classification could be obtained after optimizing spectral pre-treatment. For the discriminating of samples from three different provinces, DPLS provided 100% correct classifications. Moreover, for samples from six different locations, the correct classifications of the calibration as well as the validation data set were 96.6% using the DA method after the SNV first derivative spectral pre-treatment. Overall, NIR diffuse reflectance spectroscopy using pattern recognition was shown to have significant potential as a rapid and accurate method for the identification of herbal medicines.  相似文献   

4.
The feasibility of utilizing an Adaboost algorithm in conjuction with near-infrared (NIR) spectroscopy to automatically distinguish cigarettes of different brands was explored. Simple linear discriminant analysis (LDA) was used as the base algorithm to train all weak classifiers in Adaboost. Both principal component analysis (PCA) and its kernel version (kernel principal component analysis, KPCA) were used for feature extraction and were also compared to each other. The influence of the training set size on the final classification model was also investigated. Using a case study, it was demonstrated that Adaboost coupled with PCA or KPCA can obviously improve the ability to discriminate between samples that cannot be separated by a single linear classifier. However, in term of the overall performance, KPCA appears preferable to PCA for feature extraction, especially when the samples used for training are relatively small. The results also indicate that more training samples should be applied, if possible, in order to fully demonstrate the superiority of Adaboost. It seems that the use of an Adaboost algorithm in conjunction with NIR spectroscopy in combination with KPCA for feature extraction comprises a promising tool for distinguishing cigarettes of different brands, especially in situations where there is an obvious overlap between the NIR spectra afforded by cigarettes of different brands.  相似文献   

5.
Near infrared(NIR) spectroscopy technique has shown great power and gained wide acceptance for analyzing complicated samples.The present work is to distinguish different brands of tobacco products by using on-line NIR spectroscopy and pattern recognition techniques.Moreover,since each brand contains a large number of samples,an improved dendrogram was proposed to show the classification of different brands.The results suggest that NIR spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis(HCA) performs well in discrimination of the different brands,and the improved dendrogram could provide more information about the difference of the brands.  相似文献   

6.
《Analytical letters》2012,45(16):2640-2651
An ensemble multivariate calibration algorithm, termed as MISEPLS, is proposed. In MISEPLS, when constructing a member model, the variables that have mutual information (MI) with the response less than a threshold are eliminated; thus, the modeling can be performed in a subset of original variables and some problems arising from multi-collinearity can be avoided. Through experiments on three near-infrared (NIR) spectroscopic datasets from the food industry, MISEPLS proves to be superior to the single-model full-spectrum PLS and MIPLS (PLS combined with MI-induced variable selection). MISEPLS can improve the accuracy and robustness of a calibration model, without increasing its complexity.  相似文献   

7.
Near infrared (NIR) reflectance spectroscopy coupled with chemometric analysis was evaluated as a non-destructive tool to discriminate skull bone samples from different animal species. In total 70 skull bones from animals of three classes (mammalians, avian and reptiles) were scanned in the wavelength range between 950 to 1650 nm. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to analyse the NIR spectra of the skull samples. Correct classification rates of 96% and 81% were obtained for the classification of skull bone samples according to avian and mammalian classes, respectively. Overall, a 91% correct classification rate was obtained for the classification of skull samples according to the class (mammalian and avian). This study demonstrates the potential of NIR spectroscopy coupled with chemometric as data processing, as a means of a rapid, non-destructive classification technique for skull bone samples.  相似文献   

8.
《Analytical letters》2012,45(1):171-183
Based on wavelet transformation (WT) and mutual information (MI), a simple and effective procedure is proposed for multivariate calibration of near-infrared spectroscopy. In such a procedure, the original spectra of the training set are first transformed into a set of wavelet representations by wavelet prism transform. Then, the MI value between each wavelet coefficient variable and the dependent variable is calculated, resulting in a MI spectrum; by retaining a subset set of coefficients with higher MI, an update training set consisting of wavelet coefficients is obtained and reconstructed/converted back to the original domain. Based on this, a partial least square (PLS) model can be constructed and optimized. The optimal wavelet and decomposition level are determined by experiment. A NIR quantitative problem involving the determination of total sugar in tobacco is used to demonstrate the overall performance of the proposed procedure, named RPLS, meaning PLS in reconstructed original domain coupled with MI-induced variable selection in wavelet domain (RPLS). Three kinds of procedures, that is, conventional full-spectrum PLS in original domain (FPLS), PLS in original domain coupled with MI-induced variable selection (OPLS), and direct PLS in MI-based wavelet coefficients (WPLS), are used as reference. The result confirms that it can build more accurate and robust calibration models without increasing the complexity.  相似文献   

9.
Near-infrared spectroscopy (NIRS) was applied for direct and rapid collection of characteristic spectra from Rhizoma Corydalis, a common traditional Chinese medicine (TCM), with the aim of developing a method for the classification of such substances according to their geographical origin. The powdered form of the TCM was collected from two such different sources, and their NIR spectra were pretreated by the wavelet transform (WT) method. A training set of such Rhizoma Corydalis spectral objects was modeled with the use of the least-squares support vector machines (LS-SVM), radial basis function artificial neural networks (RBF-ANN), partial least-squares discriminant analysis (PLS-DA) and K-nearest neighbors (KNN) methods. All the four chemometrics models performed reasonably on the basis of spectral recognition and prediction criteria, and the LS-SVM method performed best with over 95% success on both criteria. Generally, there are no statistically significant differences in all these four methods. Thus, the NIR spectroscopic method supported by all the four chemometrics models, especially the LS-SVM, are recommended for application to classify TCM, Rhizoma Corydalis, samples according to their geographical origin.  相似文献   

10.
Osteonecrosis of femoral head (ONFH) is a disease characterized by an impaired blood flow in the bone. The pathogenesis is still unknown, which makes an exact diagnosis troublesome and heavily dependent on experience. Exploring the information of molecular level by modern spectroscopy may help to discover the underlying pathogenesis and find its diagnostic application in clinical medicine. The study focuses on the combination of near-infrared (NIR) spectroscopy and classification models for discriminating ONFH and normal tissues. A total of 128 surgical specimens was prepared and NIR spectra were recorded by an integrating sphere. The experiment data set was divided into three subsets, i.e., the training set, validation set, and test set. Successive projection algorithm-linear discriminant analysis (SPA-LDA) was used to compress variables and build the diagnostic model. Partial least square-discriminant analysis (PLS-DA) was used as the reference. Principal component analysis (PCA) was used for exploratory analysis. The results showed that compared to PLS-DA, SPA-LDA provided a more parsimonious model using only seven variables and achieved better performance, i.e., sensitivity of 90.5 and 85%, and specificity of 100 and 95.5% for the validation and test sets, respectively. It indicated that NIR spectroscopy combined with SPA-LDA algorithm was a feasible aid tool for discriminating ONFH from normal tissue.  相似文献   

11.
This paper proposes a methodology for cigarette classification employing Near Infrared Reflectance spectrometry and variable selection. For this purpose, the Successive Projections Algorithm (SPA) is employed to choose an appropriate subset of wavenumbers for a Linear Discriminant Analysis (LDA) model. The proposed methodology is applied to a set of 210 cigarettes of four different brands. For comparison, Soft Independent Modelling of Class Analogy (SIMCA) is also employed for full-spectrum classification. The resulting SPA-LDA model successfully classified all test samples with respect to their brands using only two wavenumbers (5058 and 4903 cm−1). In contrast, the SIMCA models were not able to achieve 100% of classification accuracy, regardless of the significance level adopted for the F-test. The results obtained in this investigation suggest that the proposed methodology is a promising alternative for assessment of cigarette authenticity.  相似文献   

12.
《Vibrational Spectroscopy》2010,52(2):276-282
The combinations of NIR spectroscopy and three classification algorithms, i.e., multi-class support vector machine (BSVM), k-nearest neighbor (KNN) and soft independent modeling of class analogies (SIMCA), for discriminating different brands of cigarettes, were explored. The influence of the training set size on the relative performance of each algorithm was also investigated. A NIR spectral dataset involving the classification of cigarettes of three brands was used for illustration. Three performance criteria based on “correctly classified rate (CCR)”, i.e., “Average CCR”, “95 percentile of CCR” and “S.D. of CCR”, were defined to compare different algorithms. It was revealed that BSVM is significantly better than KNN or SIMCA in the statistical sense, especially in cases where the training set is relatively small. The results suggest that NIR spectroscopy together with BSVM could be an alternative to traditional methods for discriminating different brands of cigarettes.  相似文献   

13.
《Analytical letters》2012,45(15):2570-2579
Near-infrared (NIR) spectroscopy, a rapid and nondestructive analytical method, has been widely used in many fields. In this paper, medium wave near-infrared (MWNIR) was used to determine the active ingredient of a deltamethrin formulation. An uninformative variable elimination-successive projections algorithm (UVE-SPA) was employed to investigate effective variables and was compared with UVE, SPA, and full-spectrum partial least squares (PLS) regression. The results indicate that MWNIR was able to determine the pesticide active ingredient and that UVE-SPA was an efficient variable selection approach by eliminating spectral redundancy and colinearity. The developed method is a meaningful exploration in the application of near-infrared spectroscopy and provides a valuable reference on pesticide quality control.  相似文献   

14.
Adulteration of foods has been known to exist for a long time and various analytical tests have been reported to address this problem. Among them, authenticity of sesame oil has attracted much attention. Near-infrared (NIR) spectral quantitative detection models of sesame oil adulterated with other oils are constructed by chemometric methods, i.e., competitive adaptive reweighted sampling (CARS), elastic component regression (ECR) and partial least squares (PLS). Sixty samples adulterated with different proportions of five kinds of other oils of lower price were scanned by a Fourier-transform-NIR spectrometer and the NIR spectra were collected in 4500–10000 cm−1 region by transmission mode. All samples were divided into the training set and an independent test set. Model population analysis has also been carried out and confirms the importance of selecting representative samples. The experimental results indicate that the PLS model using only 10 variables from CARS and the ECR model show similar performance and both are superior to the full-spectrum PLS model. CARS focuses on selecting variables and ECR focuses on optimizing the parameters, implying that both roads lead to the same destination. It seems that NIR technique combined with CARS or ECR is feasible for rapidly detecting sesame oil adulterated with other vegetable oils.  相似文献   

15.
Paper spray mass spectrometry (PS-MS) combined with partial least squares discriminant analysis (PLS-DA) was applied for the first time in a forensic context to a fast and effective differentiation of beers. Eight different brands of American standard lager beers produced by four different breweries (141 samples from 55 batches) were studied with the aim at performing a differentiation according to their market prices. The three leader brands in the Brazilian beer market, which have been subject to fraud, were modeled as the higher-price class, while the five brands most used for counterfeiting were modeled as the lower-price class. Parameters affecting the paper spray ionization were examined and optimized. The best MS signal stability and intensity was obtained while using the positive ion mode, with PS(+) mass spectra characterized by intense pairs of signals corresponding to sodium and potassium adducts of malto-oligosaccharides. Discrimination was not apparent neither by using visual inspection nor principal component analysis (PCA). However, supervised classification models provided high rates of sensitivity and specificity. A PLS-DA model using full scan mass spectra were improved by variable selection with ordered predictors selection (OPS), providing 100% of reliability rate and reducing the number of variables from 1701 to 60. This model was interpreted by detecting fifteen variables as the most significant VIP (variable importance in projection) scores, which were therefore considered diagnostic ions for this type of beer counterfeit.  相似文献   

16.
The possibility provided by Chemometrics to extract and combine (fusion) information contained in NIR and MIR spectra in order to discriminate monovarietal extra virgin olive oils according to olive cultivar (Casaliva, Leccino, Frantoio) has been investigated.Linear discriminant analysis (LDA) was applied as a classification technique on these multivariate and non-specific spectral data both separately and jointly (NIR and MIR data together).In order to ensure a more appropriate ratio between the number of objects (samples) and number of variables (absorbance at different wavenumbers), LDA was preceded either by feature selection or variable compression. For feature selection, the SELECT algorithm was used while a wavelet transform was applied for data compression.Correct classification rates obtained by cross-validation varied between 60% and 90% depending on the followed procedure. Most accurate results were obtained using the fused NIR and MIR data, with either feature selection or data compression.Chemometrical strategies applied to fused NIR and MIR spectra represent an effective method for classification of extra virgin olive oils on the basis of the olive cultivar.  相似文献   

17.
Rapid and sensitive recognition of herbal pieces according to different concocted processing is crucial to quality control and pharmaceutical effect.Near-infrared(NIR) and mid-infrared(MIR) technology combined with supervised pattern recognition based on partial least-squares discriminant analysis (PLSDA) was attempted to classify and recognize six different concocted processing pieces of 600 Areca catechu L.samples and the influence of fingerprint information preprocessing methods on recognition performance was also investigated in this work.Recognition rates of 99.24%,100%and 99.49%for original fingerprint,multiple scatter correct(MSC) fingerprint and second derivative(2nd derivative) fingerprint of NIR spectra were achieved by PLSDA models,respectively.Meanwhile,a perfect recognition rate of 100%was obtained for the above three fingerprint models of MIR spectra.In conclusion.PLSDA can rapidly and effectively extract otherness of fingerprint information from NIR and MIR spectra to identify different concocted herbal pieces of A.catechu.  相似文献   

18.
Two independent methodologies were investigated to achieve the differentiation of ewes’ cheeses from different systems of production (organic and non-organic). Eighty cheeses (40 organic and 40 non-organic) from two systems of production, two different breeds of ewe, different sizes, seasons (summer and winter) and ripening times up to 9 months were elaborated. Their mineral composition or the information provided by their spectra in the near infrared zone (NIR) coupled to chemometric tools were used in order to differentiate between organic and non-organic cheeses. Main mineral composition (Ca, K, Mg, Na and P) of cheeses and stepwise lineal discriminant analysis were used to develop a discriminant model. The results from canonical standardised coefficients indicated that the most important mineral was Mg (1.725) followed by P (0.764) and K (0.742). The percentage of correctly classified samples was 88% in internal validation and 90% in external validation, selecting Mg, K and P as variables.Spectral information in the NIR zone was used coupled to a discriminant analysis based on a regression by partial least squares in order to obtain a model which allowed a rate of samples correctly classified of 97% in internal validation and 85% in external validation.  相似文献   

19.
Rapid diagnosis is important for efficient treatment in clinical medicine. This study aimed at development of a method for rapid and reliable diagnosis using near-infrared (NIR) spectra of human serum samples with the help of chemometric modelling. The NIR spectra of sera from 48 healthy individuals and 16 patients with suspected kidney disease were analyzed. Discrete wavelet transform (DWT) and variable selection were adopted to extract the useful information from the spectra. Principal component analysis (PCA), linear discriminant analysis (LDA) and partial least squares discriminant analysis (PLSDA) were used for discrimination of the samples. Classification of the two-class sera was obtained using LDA and PLSDA with the help of DWT and variable selection. DWT-LDA produced 93.8% and 83.3% of the recognition rates for the validation samples of the two classes, and 100% recognition rates were obtained using DWT-PLSDA. The results demonstrated that the tiny differences between the spectra of the sera were effectively explored using DWT and variable selection, and the differences can be used for discrimination of the sera from healthy and possible patients. NIR spectroscopy and chemometrics may be a potential technique for fast diagnosis of kidney disease.  相似文献   

20.
An algorithm is proposed for extracting relevant information from near-infrared (NIR) spectra for multivariate calibration of routine components in complex plant samples. The algorithm is a combination of wavelet transform (WT) data compression and a procedure for uninformative variable elimination (UVE). After compression of the NIR spectra by WT, the UVE approach is used to eliminate the irrelevant wavelet coefficients. Finally, a calibration model is built from the retained wavelet coefficients to enable prediction. Because irrelevant information can be removed from the spectra used for multivariate calibration, the model based on the extracted relevant features is better than those obtained with full-spectrum data. Both prediction precision and calculation speed are improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号