首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heating-induced micellization of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (Pluronic PE10300) triblock copolymer chains was studied by ultrasensitive differential scanning calorimetry, laser light scattering, and fluorescence spectrometry with a fluorescent probe, 8-anilino-1-naphthalenesulfonic acid ammonium salt. The critical micellization temperatures obtained from the three methods are similar. The micellization kinetics was studied in terms of changes in the fluorescence and Rayleigh scattering intensities after an ultrafast infrared heating laser pulse (approximately 10 ns)-induced temperature jump. The increases in the fluorescence and Rayleigh scattering intensities in the millisecond range can be well described by a single-exponential equation, corresponding to the incorporation of individual triblock copolymer chains (unimers) into large spherical micelles. The increase in copolymer concentration or the initial solution temperature decreases the characteristic transition time. In general, the fluorescence measurement has a better signal-to-noise ratio but leads to a transition time that is slightly shorter than that from the corresponding Rayleigh scattering measurement for a given copolymer solution.  相似文献   

2.
A triblock copolymer of ethylene oxide and 1,2-butylene oxide, denoted B10E410B10, was prepared by sequential oxyanionic polymerization and characterized by 13C NMR spectroscopy and gel permeation chromatography. Micellization and the formation of micelle clusters in dilute aqueous solution, the latter a consequence of micelle bridging, was confirmed by dynamic light scattering, and average association numbers of the micelles were determined by static light scattering for T = 20-40 degrees C. The frequency dependence of the dynamic storage and loss moduli was investigated for solutions in the range of 5-20 wt %. Comparison with results for poly(oxyethylene) dialkyl ethers (10 wt %, T = 25 degrees C) indicated that the viscoelasticity of a copolymer with terminal B10 hydrophobic blocks was roughly equivalent to one with terminal C14 alkyl chains. The temperature dependence of the modulus was investigated for 15 wt % solutions at T = 5-40 degrees C. Superposition of the data led, via an Arrhenius plot, to an activation energy for the relaxation process of -40 kJ mol(-1). The negative value contrasts with the positive values found for poly(oxyethylene) dialkyl ethers and related HEUR copolymers with urethane-linked terminal alkyl chains. This difference is attributed to the block-length distribution in copolymer B10E410B10, whereby the activation energy of the relaxation process has a positive contribution from the disengagement of B blocks from micelles but a negative contribution from micellization. The negative value of the activation energy for solutions of B10E410B10 was confirmed by determining the temperature dependence of the zero-shear viscosity of its 15 wt % solution.  相似文献   

3.
A well-defined block copolymer consisting of four-arm poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate) (four-arm PEO56-b-PDEAEMA74) was synthesized by atom transfer radical polymerization. The pH-responsive self-assembly behavior was examined by potentiometric titration, surface tensiometry, laser light scattering, and transmission electron microscopy over the course of dissociation by the addition of a base or acid. The apparent hydrodynamic radius (Rh) of the micelle increased from 21 to 56 nm when the degree of protonation of the amine groups was increased from 0 to 0.5 in 0.01 M NaCl solution. In higher concentration NaCl solution, the micelle shrank due to the electrostatic charge screening of the protonated DEAEMA groups. At low pH, the micelles dissociated into unimers.  相似文献   

4.
The associative behavior of monodisperse diblock copolymers consisting of a hydrophilic poly(ethylene oxide) block and a hydrophobic poly(epsilon-caprolactone) or poly(gamma-methyl-epsilon-caprolactone) block has been studied in aqueous solution. Copolymers have been directly dissolved in water. The solution properties have been studied by surface tension, in relation to mesoscopic analyses by NMR (self-diffusion coefficients), transmission electron microscopy, and small-angle neutron and X-ray scattering. The experimental results suggest that micellization occurs at low concentration (approximately 0.002 wt %) and results in a mixture of unimers and spherical micelles that exchange slowly. The radius of the micelles has been measured (ca. 11 nm), and the micellar substructure has been extracted from the fitting of the SANS data with two analytical models. The core radius and the aggregation number change with the hydrophobic block length according to scaling laws as reported in the scientific literature. The poly(ethylene oxide) blocks are in a moderately extended conformation in the corona, which corresponds to about 25% of the completely extended chain. No significant modification is observed when poly(gamma-methyl-epsilon-caprolactone) replaces poly(epsilon-caprolactone) in the diblocks.  相似文献   

5.
The present article reports on static and dynamic light scattering (SLS and DLS) studies of aqueous solutions of the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) at temperatures between 25 and 45 degrees C. In water, P123 self-assembles into spherical micelles with a hydrodynamic radius of 10 nm, and at 40 degrees C, these micelles consist of 131 unimers. Addition of C12EO6 leads to an association of the surfactant molecules to the P123 micelles and mixed micelles are formed. The size and structure of the mixed micelles as well as interparticle interactions were studied by varying the surfactant-to-copolymer (C12EO6/P123) molar ratio. The novelty of this study consists of a composition-induced structural change of the mixed micelles at constant temperature. They gradually change from being spherical to polymer-like with increasing C12EO6 content. At low C12EO6/P123 molar ratios (below 12), the SLS measurements showed that the molar mass of the mixed micelles decreases with an increasing amount of C12EO6 in the micelles for all investigated temperatures. In this regime, the mixed micelles are spherical and the DLS measurements revealed a decrease in the hydrodynamic radius of the mixed micelles. An exception was found for C12EO6/P123 molar ratios between 2 and 3, where the mixed micelles become rodlike at 40 degrees C. This was the subject of a previous study and has hence not been investigated here. At high molar ratios (48 and above), the polymer-like micelles present a concentration-induced growth, similar to that observed in the pure C12EO6/water system.  相似文献   

6.
Aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO109-PPO41-PEO109) copolymers are nonionic surfactants that self-organize to form aggregate structures with increasing temperature or concentration. We have studied two concentrations over a range of temperatures so that the copolymers are in one of three microphases: unimers, micelles, or hydrogels formed from body centered cubic aggregates of micelles. Three different coumarin dyes were chosen based on their hydrophobicity so that different aggregate regions could be probed independently-water insoluble coumarin 153 (C153), hydrophobic coumarin 102 (C102), and the hydrophilic sodium carboxylate form of coumarin 343 (C343-). Fluorescence anisotropy experiments provide detailed information on the local microviscosity. C153 experiences a fourfold increase in reorientation time and hence microviscosity with increasing temperature through the microphase transition from unimers to micelles. C102 also shows an increase in microviscosity with temperature but smaller in magnitude and with the microphase transition shifted to higher temperature relative to C153. C343- shows only a slight sensitivity to the microphase transition. For any of the three coumarin probes, fluorescence anisotropies do not show any correlation with the microphase transition to form cubic hydrogels.  相似文献   

7.
Effect of hydrotropes viz. sodium benzene sulfonate (NaBS), sodium toluene sulfonate (NaTS) and sodium xylene sulfonate (NaXS) on the micellization, phase behavior and structure of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer L62 in aqueous solution was studied by surface tension, dye spectral, cloud point and small angle neutron scattering measurements. The addition of hydrotropes increased the critical micelle concentration (CMC) of L62 which appears to be logistic as the added hydrotrope enhances the solubility of PPO moiety (and PEO) making it behave like a more hydrophilic block copolymer that would micellize at high copolymer concentration. Partial phase diagram of L62 in water shows two cloud point (CP) in the concentration range (0-10 wt.%). Addition of hydrotropes shifts the L62 concentration range showing double cloud points at lower side of concentration; sodium xylene sulfonate (NaXS) being more effective. SANS data for L62 in the presence of 0.4 and 0.8 M NaXS at temperatures <30 °C showed unimers which are fully dissolved Gaussian chains. The unimer-to-micelle transition takes place when temperature is increased. It is found that SANS data for L62 in the presence of 0.4 M NaXS (40 and 50 °C) and 0.8 M NaXS (45 and 50 °C) correspond to ellipsoidal structure of micelles.  相似文献   

8.
The SO4(2-)-induced micellization of poly(ethylene glycol)-block-poly(4-vinylpyridium) (PEG110-b-P(4-VPH+)35) and the thermoresponsiveness of these hybrid micelles are studied by dynamic and static light scattering. When the concentration of H2SO4 is high enough, PEG110-b-P(4-VPH+)35 forms stable hybrid micelles with an ionic core of P(4-VPH+)35/SO4(2-) and a PEG corona at 25 degrees C. The formation of the hybrid micelles is reversible. A thermodynamic equilibrium exists between the hybrid micelles and PEG110-b-P(4-VPH+)35 unimers. The shifts of the equilibrium are mainly attributed to the variation of the electrostatic energy and entropic energy of the system. Therefore, the temperature can determine the states of the equilibrium, which means that the dissociation or the formation of the hybrid micelles can be triggered by just varying the temperature.  相似文献   

9.
The interaction between the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) has been investigated by means of isothermal titration and differential scanning calorimetry (DSC) as well as static and dynamic light scattering (SLS and DLS). P123 self-assembles in water into spherical micelles at ambient temperatures. At raised temperatures, the DSC data revealed a sphere-to-rod transition of the P123 micelles around 60 degrees C. C12EO6 interacts strongly with P123 micelles in aqueous solution to give mixed micelles with a critical micelle concentration (cmc) well below the cmc for pure C12EO6. The presence of C12EO6 also lowers the critical micelle temperature of P123 so aggregation starts at significantly lower temperatures. A new phenomenon was observed in the P123-C12EO6 system, namely, a well-defined sphere-to-rod transition of the mixed micelles. A visual phase study of mixtures containing 1.00 wt % P123 showed that in a narrow concentration range of C12EO6 both the sphere-to-rod transition and the liquid-liquid phase separation temperature are strongly depressed compared to the pure P123-water system. The hydrodynamic radius of spherical mixed micelles at a C12EO6/P123 molar ratio of 2.2 was estimated from DLS to be 9.1 nm, whereas it is 24.1 nm for the rodlike micelles. Furthermore, the hydrodynamic length of the rods at a molar ratio of 2.2 is in the range of 100 nm. The retarded kinetics of the shape transition was detected in titration calorimetric experiments at 40 degrees C and further studied by using time-resolved DLS and SLS. The rate of growth, which was slow (>2000 s), was found to increase with the total concentration.  相似文献   

10.
Redox properties of phenothiazine-labeled poly(ethyl glycidy ether)-block-poly(ethylene oxide) (PT-EGEn-b-EOm) are reversibly changed by core-shell micelle formation. In the temperature range higher than the critical micellization temperature (cmt), the anodic potential of PT group positively shifts and concomitantly its anodic current decrease, or levels off compared to those of the reference polymer PT-EOm without the thermo-responsive EGEn segment. The former alteration is caused by incorporation of hydrophobic PT groups into a core of the micelle and the latter by the decrease in the diffusion coefficient of PT groups due to formation of the core-shell micelles. The cmt value and the temperature-dependent alteration in the redox properties strongly depend on the polymer structure, especially the length of thermo-responsive EGEn segment. The electrochemically determined hydrodynamic radii of the polymer aggregates seem to be overestimated, compared to the values reported for the aggregates of other thermo-responsive polymers with similar molecular weights, implying the presence of electrochemically inactive PT groups in the copolymers having longer thermo-responsive segments.  相似文献   

11.
Double hydrophilic block copolymers (DHBC) consisting of a Jeffamine block, a statistical copolymer based on ethylene oxide and propylene oxide units possessing a lower critical solution temperature (LCST) of 30 degrees C in water, and poly(L-glutamic acid) as a pH-responsive block were synthesized by ring-opening polymerization of gamma-benzyl-L-glutamate N-carboxyanhydride using an amino-terminated Jeffamine macroinitiator, followed by hydrolysis. This DHBC proved thermoresponsive as evidenced by dynamic light scattering and small-angle neutron scattering experiments. Spherical micelles with a Jeffamine core and a poly(L-glutamic acid) corona were formed above the LCST of Jeffamine. The size of the core of such micelles decreased with increasing temperature, with complete core dehydration being achieved at 66 degrees C. Such behavior, commonly observed for thermosensitive homopolymers forming mesoglobules, is thus demonstrated here for a DHBC that self-assembles to generate thermoresponsive micelles of high colloidal stability.  相似文献   

12.
A unique pH-dependent phase behavior from a copolymer micellar solution to a collapsed hydrogel with micelles ordered in a hexagonal phase was observed. Small-angle neutron scattering (SANS) was used to follow the pH-dependent structural evolution of micelles formed in a solution of a pentablock copolymer consisting of poly((diethylaminoethyl methacrylate)-b-(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)-b-(diethylaminoethyl methacrylate)) (PDEAEM25-b-PEO100-b-PPO65-b-PEO100-b-PDEAEM25). Between pH 3.0 and pH 7.4, we observed the presence of charged spherical micelles. Increasing the pH of the micelle solution above pH 7.4 resulted in increasing the size of the micelles due to the increasing hydrophobicity of the PDEAEM blocks above their pKa of 7.6. The increase in size of the spherical micelles resulted in a transition to a cylindrical micelle morphology in the pH range 8.1-10.5, and at pH >11, the copolymer solution undergoes macroscopic phase separation. Indeed, the phase separated copolymer sediments and coalesces into a hydrogel structure that consists of 25-35 wt % water. Small-angle X-ray scattering (SAXS) clearly indicated that the hydrogel has a hexagonal ordered phase. Interestingly, the process is reversible, as lowering of the pH below 7.0 leads to rapid dissolution of the solid into homogeneous solution. We believe that the hexagonal structure in the hydrogel is a result of the organization of the cylindrical micelles due to the increased hydrophobic interactions between the micelles at 70 degrees C and pH 11. Thus we have developed a pH-/temperature-dependent, reversible hierarchically self-assembling block copolymer system with structures spanning nano- to microscale dimensions.  相似文献   

13.
Formation and structure transition of the complex composed of triblock copolymer F127 and nonionic surfactant TX-100 have been investigated by 1H NMR spectroscopy, dynamic light scattering (DLS), and isothermal titration calorimetry (ITC). Three TX-100 concentration regions are identified, within which TX-100/20 mg/mL F127 complex undergoes different temperature-induced structure transitions. In low concentration region (< 9.42 mM), F127 single molecular species (unimers) wrap around TX-100 micelles forming F127/TX-100 complex with TX-100 micelle as the skeleton at a lower temperature (5 degrees C), and the skeleton transfers to F127 micelle at higher temperature (40 degrees C); in intermediate TX-100 concentration region (9.42-94.85 mM), the skeleton of F127/TX-100 complex transfers from TX-100 micelle successively into F127 micelle and TX-100 micelle again upon heating. The interaction of F127 with TX-100 is saturated in high TX-100 concentration region (> 157.57 mM), and free TX-100 micelles coexist with larger clusters of F127/TX-100 complexes. In addition, TX-100-induced F127/TX-100 complex formation and structure transition are also investigated at constant temperatures. The results show that within 5-10 degrees C, F127 unimers mainly adsorb on the surface of TX-100 micelles just like normal water soluble polymers; in the temperature region of 15-25 degrees C, TX-100 micelles prompts F127 micelle formation. Within 30-40 degrees C, TX-100 inserts into F127 micelles leading to the breakdown of F127 aggregates at higher TX-100 concentrations, and the obtained unimers thread through TX-100 micelles forming complex with TX-100 micelle as skeleton.  相似文献   

14.
The fluorescence measurements of tetraethylene glycol dodecyl ether (C12E4) and triblock polymer (Pluronic P103), poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), (EO)17(PO)60(EO)17, binary mixtures have been performed over the whole mixing range in the temperature range of 20-40 degrees C. The results have been evaluated by computing various micellar parameters and excimer formation. It has been concluded that mixed micelle formation takes place due to unfavorable mixing at lower temperature range, and the magnitude of which decreases with the increase in temperature up to 40 degrees C. The reduction in the unfavorable mixing has been attributed to the dehydration of P103 micelles with the increase in temperature.  相似文献   

15.
Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxy-butyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization. The structures are confirmed by gel permeation chromatography and NMR analyses. Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous, showing decreased crystallizability. The obtained copolymers self-assemble into biodegradable nanoparticles with a core-shell micellar structure in aqueous solution, verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation. The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block. The size and size distribution are related to the compositions of the copolymers. Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed. MTT assay also demonstrates that the block copolymers are biocompatible, rendering these copolymers attractive for drug delivery. Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060358036)  相似文献   

16.
17.
Photoresponsive poly(N,N-dimethylacrylamide-co-methacryloyloxyazobenzene) (DMA-MOAB) and temperature-responsive Pluronic F127 (F127) copolymers were blended to obtain systems responsive to both stimuli that are potentially useful for pharmaceutical formulations. The random DMA-MOAB copolymer undergoes a trans to cis isomerization when irradiated by 366 nm light, which modifies both the air-water interfacial behavior and the self-associative properties of the copolymer. Under dark conditions the azobenzene groups of DMA-MOAB in the trans conformation self-associate and the interactions with F127 are minimal. The cis conformation of the azobenzene groups of the DMA-MOAB copolymer is relatively more hydrophilic than the trans conformation, which causes the copolymer micelles to dissociate upon irradiation, allowing the unimers to form mixed micelles with the F127. This causes the sol-gel transition temperature of the DMA-MOAB:F127 blend to be 10 degrees C lower upon irradiation at 366 nm compared to that for the dark conditions. It has been found that F127 (10-12 wt %):DMA-MOAB (5-6 wt %) aqueous solutions have at body temperature a low viscosity when equilibrated in the dark and undergo a sol-gel transition when irradiated. Such a transition strongly alters the diffusion of solutes such as methylene blue within the solutions. This light-induced interaction between the azobenzene moieties of DMA-MOAB and F127 micelles disappears when hydroxypropyl-beta-cyclodextrin (HPbetaCD) is added to the medium. In the presence of HPbetaCD, the cis-azobenzene groups are hosted in the cyclodextrin cavities and the mixed micelles are not formed. Therefore, changes in HPbetaCD concentration could be used to modulate the response of the copolymer blends to light.  相似文献   

18.
This paper reports the studies on micelle formation of new biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer with various PHB and PEO block lengths in aqueous solution. Transmission electron microscopy showed that the micelles took an approximately spherical shape with the surrounding diffuse outer shell formed by hydrophilic PEO blocks. The size distribution of the micelles formed by one triblock copolymer was demonstrated by dynamic light scattering technique. The critical micellization phenomena of the copolymers were extensively studied using the pyrene fluorescence dye absorption technique, and the (0,0) band changes of pyrene excitation spectra were used as a probe for the studies. For the copolymers studied in this report, the critical micelle concentrations ranged from 1.3 x 10(-5) to 1.1 x 10(-3) g/mL. For the same PEO block length of 5000, the critical micelle concentrations decreased with an increase in PHB block length, and the change was more significant in the short PHB range. It was found that the micelle formation of the biodegradable amphiphilic triblock copolymers consisting of poly(beta-hydroxyalkanoic acid) and PEO was relatively temperature-insensitive, which is quite different from their counterparts consisting of poly(alpha-hydroxyalkanoic acid) and PEO.  相似文献   

19.
以聚乙二醇单甲醚甲基丙烯酸酯(MPEGMA)为大分子单体, 甲基丙烯酸六氟丁酯(HFMA)为含氟单体, N-异丙基丙烯酰胺(NIPAAm)为功能性单体, 采用大分子单体接枝共聚法, 制备了一种温敏性含氟两亲接枝共聚物P(NIPAAm-co-HFMA)-g-PEG. 利用FTIR, 1H NMR, 19F NMR和GPC对共聚物的结构进行表征; 采用紫外-可见分光光度计测定了共聚物的低临界溶解温度(LCST)约为38.9 ℃, 高于人体正常的生理温度; 利用荧光探针技术测定了共聚物的临界胶束浓度(cmc), 结果表明, 当共聚物溶液温度高于LCST时, 其cmc明显变小; 利用激光光散射粒度仪(LLS)测定了共聚物胶束的水合粒径及其分布, 当温度达到LCST时, 胶束粒径明显变小, 温度过高时, 粒径又有所增大; 利用透射电子显微镜(TEM)研究了共聚物胶束的形貌, 结果表明, P(NIPAAm-co-HFMA)-g-PEG在水溶液中可自组装成球状胶束粒子, 随着温度的升高, 共聚物胶束由松散的核壳结构转变成更加紧凑的球状结构, 且粒径明显变小.  相似文献   

20.
The effects of SDS on the structural changes of the thermally induced polymeric micelles from a graft copolymer comprising poly(acrylic acid) (PAAc) as the backbone and poly(N-isopropylacrylamide) (PNIPAAm) and monomethoxy poly(ethylene glycol) (mPEG) as the grafts in aqueous solution are studied. At low temperature, SDS micelles form via the hydrophobic association of SDS molecules with the PNIPAAm grafts at a critical aggregation concentration of SDS (cac(SDS)) much lower than its critical micelle concentration. Consequently, the critical aggregation temperature of the graft copolymer is elevated. The corresponding structure of the thermally induced polymeric micelles is characterized by an abrupt reduction in the particle size and an increased tendency toward formation of the monocore structure with a more compact and hydrophobic PNIPAAm microdomain being developed. On the other hand, upon the polymeric micelle formation at high temperature, the copolymer-bound SDS micelle structure is disrupted and the dissociated SDS molecules migrate to the core-shell interface with their alkyl chains residing in the liquidlike region of the hydrophobic PNIPAAm microdomain. The correlation between the polymeric particles and copolymer-bound micelles is further substantiated by showing the change of the colloidal particle size in response to changes in cac(SDS) via adjusting the pH of the aqueous copolymer/SDS solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号