首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A microstructured ionic crystal, K(3)[Cr(3)O(OOCH)(6)(H(2)O)(3)][alpha-SiW(12)O(40)].16 H(2)O (1) was synthesized by the complexation of the Keggin-type polyoxometalate of [alpha-SiW(12)O(40)](4-) with a macrocation of [Cr(3)O(OOCH)(6)(H(2)O)(3)](+). Compound 1 possessed a straight channel, with an opening of approximately 0.5x0.8 nm, which contained the water of crystallization. The use of the macrocation with large size (0.7 nm) and small charge (+1) reduced the anion-cation interaction and was essential for the channel formation. The molecular structures of the polyoxometalate and the macrocation in 1 were retained under vacuum at 473 K. Analogues of 1 were synthesized with [alpha-PVW(11)O(40)](4-) or [Fe(3)O(OOCH)(6)(H(2)O)(3)](+). The water of crystallization in 1 was removed under vacuum at room temperature to form the closely packed guest-free phase 2. Compound 2 reversibly and repeatedly included water and polar organic molecules with two carbon atoms or less. Guest inclusion was highly selective and a difference of even one methylene group in the organic guest molecule was discriminated by the host. Polar organic molecules with longer methylene chains and nonpolar molecules such as dinitrogen and methane were completely excluded. The guest-inclusion properties could be explained by the ion-dipole interaction between the host and the guest, which is proportional to the dipole moment of the guest molecule and inversely proportional to the ion-dipole (host-guest) distance. Thus, small polar molecules were selectively absorbed. These distinctive guest-inclusion properties were successfully applied to the oxidation of methanol from a mixture of C(1) and C(2) alcohols. These results show unique guest inclusion and catalysis by rationally designed ionic crystals.  相似文献   

2.
3.
The potential of polar intermetallic compounds to catalyze hydrogenation reactions was evaluated. The novel compounds CaNi4Sn2, SrNi4Sn2, and Ca(0.5)Sr(0.5)Ni(4)Sn(2) were tested as unsupported alloys in the liquid-phase hydrogenation of citral. Depending on the reaction conditions, conversions of up to 21.0 % (253 K and 9.0 MPa hydrogen pressure) were reached. The binary compounds Ni3Sn and Ni3Sn2 were also tested in citral hydrogenation under the same conditions. These materials gave conversions of up to 37.5 %. The product mixtures contained mainly geraniol, nerol, citronellal, and citronellol. The isotypic stannides CaNi4Sn2, Ca(0.5)Sr(0.5)Ni4Sn2, and SrNi4Sn2 were obtained by melting mixtures of the elements in an arc-furnace under an argon atmosphere. Single crystals were synthesized in tantalum ampoules using special temperature modes. The novel structures were established by single-crystal X-ray diffraction. They crystallize in the tetragonal space group I4/mcm with parameters: a=7.6991(7), c=7.8150(8) A, wR2=0.034, 162 F(2) values, 14 variable parameters for CaNi4Sn2; a=7.7936(2), c=7.7816(3) A, wR2=0.052, 193 F(2) values, 15 variable parameters for Ca(0.5)Sr(0.5)Ni4Sn2; and a=7.8916(4), c=7.7485(5) A, wR2=0.071, 208 F(2) values, 14 variable parameters for SrNi4Sn2. The Ca(1-x)Sr(x)Ni(4)Sn(2) (x=0.0, 0.5, 1.0) structures can be represented as a stuffed variant of the CuAl2 type by the formal insertion of one-dimensional infinite Ni-cluster chains [Ni4] into the Ca(Sr)Sn2 substructure. The Ni and Sn atoms form a three-dimensional infinite [Ni4Sn2] network in which the Ca or Sr atoms fill distorted octagonal channels. The densities of states obtained from TB-LMTO-ASA calculations show metallic character for both compounds.  相似文献   

4.
5.
6.
Two new supramolecular complexes [Hg(6)As(4)](CrBr(6))Br (1) and [Hg(6)As(4)](FeBr(6))Hg(0.6) (2) have been prepared by the standard ampoule technique and their crystal structures determined. Both crystallize in the cubic space group Pa$\bar 3$ with the unit cell parameter a=12.275(1) (1) and 12.332(1) A (2), and Z=4. Their structures consist of bicompartmental, three-dimensional [Hg(6)As(4)](4+) frameworks with cavities of two different sizes occupied by guest anions of different type. The bigger cavities are filled with the octahedral MBr(6) (n-) ions (M=Cr or Fe; n=3 or 4), whereas the smaller cavities trap either Br- ions (1) or Hg(0) (2). The analysis of the host-guest contacts has allowed a classification of the octahedral guests as coordinated and the monatomic guests as clathrated. Magnetic measurements and ESR spectroscopy data have given information about the interaction between the host and guests. Band structure calculations (HF and hybrid DFT level) indicate that both 1 and 2 are non-metallic, with a band gap of approximately 1.5 eV (B3LYP), and that the interaction between the host and guests is of predominantly electrostatic character. It is shown that though the electrostatic host-guest interaction is weak it plays an important role in assembling the perfectly ordered supramolecular architectures.  相似文献   

7.
To investigate dynamic solid-state complexation hitherto unexplored in nitrogen-bridged calixarene analogues, azacalix[6]arene hexamethyl ether has been prepared in three steps by applying a 5+1 fragment-coupling approach by using a Buchwald- Hartwig aryl amination reaction with the aid of our previously devised temporal N-silylation protocol. X-ray crystallographic analysis and NMR spectroscopic measurements have revealed that the azacalix[6]arene is well endowed with hydrogen-bonding ability, by which both the molecular and crystal structures are controlled. The azacalix[6]arene is conformationally flexible in solution on the NMR time scale, whereas it adopts a definite 1,2,3-alternate conformation with S2 symmetry in the solid state as a result of intramolecular bifurcated hydrogen-bonding interactions. In the crystal, molecules of the azacalix[6]arene are mutually interacted by intermolecular hydrogen bonds to establish one-dimensional hexane-filled nanochannel crystal architecture. Although the single crystal was broken after desolvation, the resultant polycrystalline powder material was capable of selectively adsorbing CO2 among the four main gaseous components of the atmosphere. In contrast, carbocyclic p-tert-butylcalix[6]arene hexamethyl ether, the crystal structure of which was also elucidated for the first time in the present study, gave rise to almost no uptake of CO2. Additional solid-gas adsorption experiments for another three gases, such as N2, O2, and Ar, suggested that quadrupole/induced-dipole interactions and/or hydrogen-bonding interactions played an important role in permitting the observed selective uptake of CO2 by this new azacalix[6]arene in the solid state.  相似文献   

8.
Zeolite A provides a suitable environment to host Ag2S and PbS clusters, so that spectroscopic investigations on very small particles are possible. The Ag2S monomer is colorless and shows photoluminescence at 490 nm with a lifetime of 300 micros, while the absorption and luminescence of Ag4S2 and larger clusters are red-shifted. The properties of these Ag2S/zeolite A materials depend on the co-cations. Results for Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, and Sr2+ are reported. Excitation energy transfer between Ag2S and Ag4S2 has been studied in materials containing Ca2+ co-cations. PbS particles can be prepared by the same method as Ag2S in the cavities of zeolite A. The PbS monomers obtained are yellow and show photoluminescence at 570 nm, with a lifetime of 700 ns.  相似文献   

9.
10.
11.
Take it slow! A metal-organic container molecule has been shown to bind guanidinium cations (blue) between the sulfonate groups on its periphery, as well as accommodating guests such as cyclopentane and cyclohexane in its internal cavity (red). Kinetic studies on the system demonstrated a linear relationship between the amount of bound guanidinium ions and the rate of guest exchange.  相似文献   

12.
Calix[2]benzo[4]pyrrole m-6 and p-6, each containing two dipyrromethane moieties and two m-phenylene or p-phenylene units, respectively, were readily synthesised from pyrrole, 1,3- and 1,4-bis(1,1'-dimethylhydroxymethyl)benzene, (m-4 and p-4, respectively) and acetone. Macrocycles m-6 and p-6 were tested as receptors for a selection of anions, such as acetate, dihydrogenphosphate and fluoride. The X-ray structures of m-6 and p-6 and those of the complexes m-6F(-), m-6Cl(-) and m-6CH(3)COO(-) (with an nBu(4)N(+) counterion) were also determined.  相似文献   

13.
A new C(3v)-symmetrical calix[6]azacryptand, that is, calix[6]tmpa (11), was synthesized by efficient [1+1] macrocyclization reactions. Remarkably, both linear and convergent synthetic strategies that were applied lead to equally good overall yields. Calix[6]tmpa behaves as a single proton sponge and appeared reluctant to undergo polyprotonation, unlike classical tris(2-pyridylmethyl)amine (tmpa) derivatives. It also acts as a good host for ammonium ions. Interestingly, it strongly binds a sodium ion and a neutral guest molecule, such as a urea, an amide, or an alcohol, in a cooperative way. A (1)H NMR study indicated that the ligand, as well as its complexes, adopt a major flattened cone conformation that is the opposite of that observed with the previously reported calix[6]cryptands. Characterization of the monoprotonated derivative 11H(+) by X-ray diffraction also revealed the presence of a 1,3-alternate conformation, which is the first example of its kind in the calix[6]arene family. This conformer is probably also present in solution as a minor species. The important covalent constraint induced by the polyaromatic tmpa cap on the calixarene skeleton, and conversely from the calix core onto the tmpa moiety, is the likely basis for the unique conformational and chemical properties of this host.  相似文献   

14.
15.
16.
17.
18.
Tripodal host 2,4,6-tris(1-phenyl-1H-tetrazolylsulfanylmethyl)mesitylene (TPTM) has been synthesized through a facile procedure. As expected, it adopts an all-syn cylindrical configuration, thereby delimiting an inner cavity. To explore the solvatomorphism and inclusion behavior of TPTM, a series of organic and inorganic species were employed as guests to afford 17 inclusion compounds (1, 2, 3 a-3 f, 4 a-4 i) that can be classified into four distinct forms (forms I-IV), under similar conditions. These compounds were characterized by single-crystal and powder X-ray diffraction, and (1)H NMR studies. In compound 1 with form I, one foot of a TPTM molecule inserts into the cavity of an opposite TPTM molecule to form a dimeric "hand-shake" motif with one acetonitrile molecule occupying the void. Compound 2 with form II contains three types of capsule-shaped dimers, each of which holds a CH(2)Cl(2) molecule as the guest. In compounds 3 a-3 f with form III, each pair of TPTM molecules interdigitates to form a capsule-shaped dimeric unit accommodating a guest molecule in the endo-cavity. In compounds 4 a-4 i with form IV, each TPTM molecule makes contact with three nearby TPTM molecules in a "self-including" manner to generate a graphite-like organic layer, and through further superposition to form open hexagonal channels. From the experimental and theoretical results, the intrinsic properties of guest molecules, such as size, shape, and self-interaction, can be regarded as the main factors leading to these solvatomorphism phenomena and the subtle inclusion behavior of TPTM. Thermogravimetric analyses show that the encapsulated guest molecules in these compounds can be evacuated at relatively high temperatures, and this demonstrates the outstanding inclusion capability of TPTM. In addition, for compound 4 a with benzene molecules in the channels, reversible exchange of toluene and separation of xylene isomers on single crystals have been observed.  相似文献   

19.
Methods for the preparation of anion-free bambus[6]uril (BU6) are presented. They are based on the oxidation of iodide anion, which is bound inside the macrocycle, utilizing dark oxidation by hydrogen peroxide or photooxidation in the presence of titanium dioxide. Anion-free BU6 was found to be insoluble in any of the investigated solvents; however, it dissolves in methanol/chloroform (1:1) or acetonitrile/water (1:1) mixtures in the presence of the tetrabutylammonium salt of a suitable anion. The association constants with halide ions, BF(4)(-), NO(3)(-), and CN(-), were measured by (1)H NMR spectroscopy. The highest association constant (8.9×10(5) M(-1)) was found for the 1:1 complex of BU6 with I(-) in acetonitrile/water mixture. A number of crystal structures of BU6 complexes with various anions were obtained. The influence of the anion size on the macrocycle diameter is discussed together with an unusual arrangement of the macrocycles into separate layers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号