首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this work, we study the local distinguishability of maximally entangled states(MESs). In particular, we are concerned with whether any fixed number of MESs can be locally distinguishable for sufficiently large dimensions. Fan and Tian et al. have already obtained two satisfactory results for the generalized Bell states(GBSs) and the qudit lattice states when applied to prime or prime power dimensions. We construct a general twist-teleportation scheme for any orthonormal basis with MESs that is inspired by the method used in [Phys. Rev. A 70, 022304(2004)]. Using this teleportation scheme, we obtain a sufficient and necessary condition for one-way distinguishable sets of MESs, which include the GBSs and the qudit lattice states as special cases.Moreover, we present a generalized version of the results in [Phys. Rev. A 92, 042320(2015)] for the arbitrary dimensional case.  相似文献   

2.
A review of diverse resonant effects appearing in weakly dissipative Josephson coupled systems in the presence of inhomogeneous dynamic localized state (discrete breather) is given. As particular examples I discuss the resonant interaction of breather states with linear electromagnetic excitations (EEs) in dc driven Josephson junction ladders and a single plaquette containing three Josephson junctions. Such resonant interaction manifests itself by resonant steps and various sharp switchings (voltage jumps) in the current-voltage characteristics. Moreover, the resonant interaction leads to an increase of breather dynamical complexity, e.g., enlargement of the breather core, low symmetry or quasiperiodic breather states. I show that the application of an external magnetic field allows to tune the resonant interaction, and correspondingly to increase (or decrease) the height of the resonant steps, to change the stability of the breather states.  相似文献   

3.
Driven and non-equilibrium quantum states of matter have attracted growing interest in both theoretical and experimental studies in condensed matter physics. Recent progress in realizing transient collective states in driven or pumped Dirac materials (DMs) is reviewed herein. In particular, the focus is on optically pumped DMs which are a promising platform for transient excitonic instabilities. Optical pumping combined with the linear (Dirac) dispersion of the electronic spectrum offers a knob for tuning the effective interaction between the photoexcited electrons and holes, and thus provides a way of reducing the critical coupling for excitonic instability. As a result, a transient excitonic condensate could be achieved in a pumped DM while it is not feasible in equilibrium. A unifying theoretical framework is provided for describing transient collective states in 2D and 3D DMs. The experimental signatures are described and numerical estimates of the size of the dynamically induced excitonic gaps and the values of the critical temperatures for several specific systems, are summarized. In addition, general guidelines for identifying promising material candidates are discussed. Finally, comments are provided regarding recent experimental efforts in realizing transient excitonic condensate in pumped DMs, and outstanding issues and possible future directions are outlined.  相似文献   

4.
This paper proposes an alternative scheme for generating cluster-type of entangled coherent states. This scheme is based on resonant interaction of a two-mode cavity with a two-level atom driven by strong classical fields. Thus the required interaction time is greatly shortened, which is very important in view of decoherence.  相似文献   

5.
We performed a novel phase-sensitive microwave reflection experiment which directly probes the dynamics of the Josephson plasma resonance in both the linear and the nonlinear regime. When the junction was driven below the plasma frequency into the nonlinear regime, we observed for the first time the transition between two different dynamical states predicted for nonlinear systems. In our experiment, this transition appears as an abrupt change in the reflected signal phase at a critical excitation power. This controlled dynamical switching can form the basis of a sensitive amplifier, in particular, for the readout of superconducting qubits.  相似文献   

6.
We present a scheme to prepare cluster-type entangled squeezed vacuum states (CTESVS) by considering the two-photon interaction between a two-level atom and a high-quality cavity, driven by a strong classical field. After the realization of simple atomic measurements, the generation of CTESVS in four separate cavities is accomplished within the cavity decay time. In the case of large atom=cavity detuning, the scheme is immune to the effect of atomic spontaneous emission.  相似文献   

7.
For an atom in an externally driven cavity, we show that special initial states lead to near-disentangled atom-field evolution, and superpositions of these can lead to near maximally entangled states. Somewhat counterintutively, we find that (moderate) spontaneous emission in this system actually leads to a transient increase in entanglement beyond the steady-state value. We also show that a particular field correlation function could be used, in an experimental setting, to track the time evolution of this entanglement.  相似文献   

8.
An optical ring cavity filled with an isotropic medium is driven externally. Two waves of the same frequency but of different polarization are coupled nonlinearly by a Kerr type interaction. It is theoretically shown that the symmetry of the linear polarized input field may be broken spontaneously. Beyond an intensity threshold the output field gets elliptic polarization. Right and left elliptic states are stable. The system shows polarization bistability.  相似文献   

9.
We propose an implementation of the quantum XOR (controlled-NOT) gate on the basis of coupledasymmetricquantum dots. Results of our numerical simulations show that the coupling constant of the dipole–dipole interaction and the probability of spontaneous emission can be tuned over a wide range by a proper choice of the potential profile, material parameters, and distances between the dots. We argue that the use of the asymmetric potential profile provides better conditions for having the Ising-type interaction between the dots than earlier proposed schemes based on regular symmetric quantum dots biased with an electric field. Our system gives better resolution of different quantum states, avoids any undesirable time evolution of these states, and can be driven with a femtosecond laser. The qubit manipulation and time coherency requirements are also discussed.  相似文献   

10.
We present the experimental evidence for a few elementary processes occurring in Stark effect for non-hydrogenic atoms. They are likely to play an important role in the field redistribution of non-hydrogenic states onto the parabolic hydrogenic channels. We only consider the low field quasi-bound part of the spectra. We show in particular that the interaction between non-hydrogenic states and the incomplete hydrogenic manifold (exhibiting a linear Stark behaviour) leads to the generation of quasi-Fano interference profiles well described in the framework of “interaction of one discrete state with a quasi-continuum of discrete states”. Some examples of accidental decoupling of states from the manifold are also shown leading to peculiar features throughout the spectrum.  相似文献   

11.
A scheme for the preparation of four-ion entangled cluster states has been proposed. Two two-level ions are confined in a linear trap and are simultaneously driven with a laser beam. In the Lamb-Dicke regime, we can get the effective Hamiltonian in the interaction picture.The effective Hamiltonian may be used to describe a realistic physical system. The scheme is insensitive to both the initial vibrational state and heating.  相似文献   

12.
Time-dependent Hamilton systems are important in modeling the nondissipative interaction of the system with its environment. We review some recent results and present some new ones. In time-dependent, parametrically driven, one-dimensional linear oscillator, the complete analysis can be performed (in the sense explained below), also using the linear WKB method. In parametrically driven nonlinear oscillators extensive numerical studies have been performed, and the nonlinear WKB-like method can be applied for homogeneous power law potentials (which e.g. includes the quartic oscillator). The energy in time-dependent Hamilton systems is not conserved, and we are interested in its evolution in time, in particular the evolution of the microcanonical ensemble of initial conditions. In the ideal adiabatic limit (infinitely slow parametric driving) the energy changes according to the conservation of the adiabatic invariant, but has a Dirac delta distribution. However, in the general case the initial Dirac delta distribution of the energy spreads and we follow its evolution, especially in the two limiting cases, the slow variation close to the adiabatic regime, and the fastest possible change – a parametric kick, i.e. discontinuous jump (of a parameter), where some exact analytic results are obtained (the so-called PR property, and ABR property). For the linear oscillator the distribution of the energy is always, rigorously, the arcsine distribution, whose variance can in general be calculated by the linear WKB method, while in nonlinear systems there is no such universality. We calculate the Gibbs entropy for the ensembles of noninteracting nonlinear oscillator, which gives the right equipartition and thermostatic laws even for one degree of freedom.  相似文献   

13.
The Einstein relation, relating the steady state fluctuation properties to the linear response to a perturbation, is considered for steady states of stochastic models with a finite state space. We show how an Einstein relation always holds if the steady state satisfies detailed balance. More generally, we consider nonequilibrium steady states where detailed balance does not hold and show how a generalisation of the Einstein relation may be derived in certain cases. In particular, for the asymmetric simple exclusion process and a driven diffusive dimer model, the external perturbation creates and annihilates particles thus breaking the particle conservation of the unperturbed model.  相似文献   

14.
In this paper a variation in density of states (DOS) of the substrate due to chemisorption of hydrogen on transition metals using composite Anderson-Newns model has been investigated for different coverages in quasi-chemical approximation of Fowler and Guggenhiem, which in the limitz→∞ gives the Bragg-Williams approximation as a special case. Variation in density of states has been studied for one-dimensional periodic substrate with change in adatom interaction energy and coverage. With increase in coverage, the bonding and antibonding (B-AB) peaks are found to shift towards higher energies and at the same time relative height of the peaks also increases. The interesting feature to observe is that both approximations for a particular coverage, give split-off states with different height for both (B-AB) peaks. It particularly indicates change in B-AB states, representing amount of chemisorption, with the change in interaction energy between adatoms. At the same time bond strength is also found to decrease with interaction between adatoms.  相似文献   

15.
We provide the first statistical analysis of the decay rates of strongly driven 3D atomic Rydberg states. The distribution of the rates exhibits universal features due to Anderson localization, while universality of the time dependent decay requires particular initial conditions.  相似文献   

16.
《中国物理 B》2021,30(6):66702-066702
We study the properties of Bose–Einstein condensates under a non-Hermitian spin–orbit coupling(SOC), induced by a dissipative two-photon Raman process. We focus on the dynamics of the condensate at short times, when the impact of decoherence induced by quantum jumps is negligible and the dynamics is coherently driven by a non-Hermitian Hamiltonian. Given the significantly modified single-particle physics by dissipative SOC, the interplay of non-Hermiticity and interaction leads to a quasi-steady-state phase diagram different from its Hermitian counterpart. In particular, we find that dissipation can induce a phase transition from the stripe phase to the plane-wave phase. We further map out the phase diagram with respect to the dissipation and interaction strengths, and finally investigate the stability of quasi-steady states through the time-dependent dissipative Gross–Pitaevskii equation. Our results are readily accessible based on standard experiments with synthetic spin–orbit couplings.  相似文献   

17.
An alternative scheme is proposed for preparing the superpositions of coherent states with controllable weighting factors along a straight line for a cavity field. The scheme is based on the interaction of a single-mode cavity field with a resonant two-level atom driven by a strong classical field. It is in contrast to the previous methods used in cavity QED of injecting a coherent state into a cavity via a microwave source. In the scheme, the interaction between the cavity mode and atoms is fully resonant, thus the required interaction time is greatly shortened. Moreover, the present scheme requires smaller numbers of operations. In view of decoherence, a reduction of interaction time and numbers of operations for the state preparation is very important for experimental implementation of quantum state engineering.  相似文献   

18.
赵超樱  谭维翰 《物理学报》2005,54(10):4526-4531
导出在P表象中含时的线性驱动简并参量放大Fokker-Planck方程,并求其解.在阈值以下或阈值附近,含时驱动Fokker-Planck方程的解与线性理论或阈值附近的微扰理论预言的基本相符.在阈值以上,含时驱动Fokker-Planck方程解的短期行为也与线性近似解相近,但当τ增大后的长期行为完全区别于线性理论的结果. 关键词: 含时的线性驱动简并参量放大 Fokker-Planck方程 量子起伏  相似文献   

19.
In this paper, we study the interaction between two Λ-type three-level atoms (a typical qutrit-qutrit system) and two coupled modes of a quantized radiation field in the presence of field-field interaction (parametric down conversion) which are simultaneously injected within an optical cavity. Then, by applying an appropriate canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions for atoms (in some possible states) and the fields (in the finite dimensional pair coherent state) which may be prepared, the explicit form of the state vector of the whole system is analytically evaluated. In order to find the degree of entanglement between different parts of subsystems (“atom+atom”-field, “atom+field”-atom and atom-atom) the dynamics of entanglement through different measures, namely, linear entropy and negativity is evaluated. In each case, the effect of various types of initial atomic states on the above measures are numerically analyzed, in detail. It is indicated that the amount of entanglement can be tuned by choosing appropriate initial states of atoms. Particularly, it is shown that the entanglement sudden death (ESD) can be controlled by adjusting the initial state of the atoms.  相似文献   

20.
An alternative scheme is proposed for preparing the superpositions of coherent states with controllable weighting factors along a straight line for a cavity field. The scheme is based on the interaction of a single-mode cavity field with a resonant two-level atom driven by a strong classical field. It is in contrast to the previous methods used in cavity QED of injecting a coherent state into a cavity via a microwave source. In the scheme, the interaction between the cavity mode and atoms is fully resonant, thus the required interaction time is greatly shortened. Moreover, the present scheme requires smaller numbers of operations. In view of decoherence, a reduction of interaction time and numbers of operations for the state preparation is very important for experimental implementation of quantum state engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号