首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The exchange bias (HE) and coercivity (HC) of the ferromagnet/antiferromagnet (FM/AFM) films have been simulated with Monte Carlo method. The simulated results indicate that, the value of HE decreases with increasing temperature, and the values of HE and the blocking temperature Tb at which HE=0 reduce evidently with decreasing absolute value of interlayer exchange coupling JI. It also is found that for the large absolute values of JI, the maximum in HC occurs very close to Tb. At the same time, it is observed that the diluted ratio of FM at FM/AFM interface influences clearly the value of HE. The simulated results are consistent with the experimental facts. The maximum behaviour in the HCT curves has been explained by the interplay of the softening of some fraction of the spins in the AFM layer near TN′ and the disorder of the spins in FM layer near Curie temperature TC.  相似文献   

2.
For the ferromagnetic (FM)/antiferromagnetic (AFM) bilayers, both negative and positive exchange bias HE have been observed for low and high cooling field HCF, respectively. The thickness dependence of HE and coercivity HC have been investigated for the cases of negative and positive HE. It is found that the negative HE and the positive one have similar FM thickness dependence that is attributed to the interfacial nature of exchange bias. However, the AFM thickness dependence of positive HE is completely contrary to that of the negative one, which clearly demonstrates that the AFM spins play different roles for the cases of positive and negative HE. In particular, the AFM thickness of positive HE was first highlighted by an AFM spin canting model. These results should be attributed to the interfacial spin configuration after field cooling procedure.  相似文献   

3.
Manganites of the Sm1?xSrxMnO3 system (x=0.33, 0.4, and 0.45) possess giant negative values of the magnetoresistance Δρ/ρ and the volume magnetostriction ω near the Curie temperature TC. In the compound with x=0.33, the isotherms of Δρ/ρ, ω, and magnetization σ exhibit smooth variation and do not reach saturation up to maximum magnetic field strengths (120 kOe) studied (according to the neutron diffraction data, this substance comprises a ferromagnetic (FM) matrix with distributed clusters of a layered antiferromagnetic (AFM) structure of the A type). In the compounds with x=0.4 and 0.45 containing, besides the FM matrix and A-type AFM phase, a charge-ordered AFM phase of the CE type (thermally stable to higher temperatures as compared to the A-type AFM and the FM phases), the same isotherms measured at TTC show a jumplike increase in the interval of field strengths between Hc1 and Hc2 and then reach saturation. In the interval Hc1 > H > Hc2, the σ, ω, and Δρ/ρ values exhibit a metastable behavior. At temperatures above TC, the anisotropic magnetostriction changes sign, which is indicative of rearrangements in the crystal structure. The giant values of ω and Δρ/ρ observed at TTC for all compounds, together with excess (relative to the linear) thermal expansion and a maximum on the ρ(T) curve, are explained by the phenomenon of electron phase separation caused by a strong s-d exchange. The giant values of magnetoresistance and volume magnetostriction (with ω reaching ~10?3) are attributed to an increase in the volume of the FM phase induced by the applied magnetic field. In the compound with x=0.33, this increase proceeds smoothly as the FM phase grows through the FM layers in the A-type AFM phase. In the compounds with x=0.4 and 0.45, the FM phase volume increases at the expense of the charge-ordered CE-type AFM structure (in which spins of the neighboring manganese ions possess an AFM order). The jumps observed on the σ(H) curves, whereby the magnetization σ reaches ~70% of the value at T=1.5 K, are indicative of a threshold character of the charge-ordered phase transition to the FM state. Thus, the giant values of ω and Δρ/ρ are inherent in the FM state, appearing as a result of the magnetic-field-induced transition of the charge-ordered phase to the FM state, rather than being caused by melting of this phase.  相似文献   

4.
The magnetization and electrical resistivity of Mn3−xFexSnC (0.5≤x≤1.3) were measured to investigate the behavior of the complicated magnetic phase transitions and electronic transport properties from 5 to 300 K. The results obtained demonstrate that Fe doping at the Mn sites of Mn3SnC induces a more complicated magnetic phase transition than that in its parent phase Mn3SnC from a paramagnetic (PM) state to a ferrimagnetic (FI) state consisting of antiferromagnetic (AFM) and ferromagnetic (FM) components, while, with the change of Fe-doped content and magnetic field, there is a competition between the AFM component and FM component in the FI state. Both the Curie temperature (TC) and the saturated magnetization Ms increase with increasing x. The FM component region becomes broader with further increasing Fe-doped content x. The external magnetic field easily creates a saturated FM state (and increased TC) when . Fe doping quenches the negative thermal expansion (NTE) behavior from 200 to 250 K reported in Mn3SnC.  相似文献   

5.
Studies on La0.7Sr0.3Co1−xMnxO3 (x=0-0.5) compounds evidence that the interaction between Mn and Co ions in this system is antiferromagnetic super-exchange and not ferromagnetic (FM) double-exchange (DE). As a result, antiferromagnetism and magnetic glassiness develop steadily with increasing Mn content and the system becomes a spin glass at x∼0.1. Analyses of high-field magnetization data indicate that the system consists of two major phases: a metallic FM phase which magnetically saturates in rather low field, and an insulating non-FM phase which has a linear dependence of magnetization on magnetic field. In the low doping regime, the fraction of the non-FM component expands with temperature at the expense of the FM phase and becomes maximal at TC. Ferromagnetism reappears in highly doped (x≥0.2) compounds due to the presence of DE interaction between the Mn ions. The small volume fraction of the FM phase derived from the M(H) data in high-field region supports the coexistence of insulating and FM behaviors in the highly doped samples.  相似文献   

6.
The crystal structure and exchange bias of the bulk Heusler alloys Ni50Mn50−xInx with 14.5?x?15.2 have been investigated using X-ray diffraction and magnetization measurements, respectively. Magnetic measurements were performed with SQUID magnetometry after samples were zero-field cooled and field cooled (FC) in positive magnetic fields up to H=50 kOe, from a temperature T=380 K. Three temperatures of the phase transitions, T1<TM<TC, and a shift of the FC (50 kOe) magnetic hysteresis loops up to 120 Oe at 5 K have been detected for all samples. The exchange bias field (HE) was almost constant for intermediate In concentrations 14.8<x<15.2, and sharply decreased to about 20 Oe on the borders of this concentration interval (x?14.5; 15.2?x). The changes of HE have been related to changes in the ratio of T1 to TM: the overlapping of transitions at T1 and TM (for x=14.8, and 15.2) results in a decrease in HE.  相似文献   

7.
For the Nd0.1La0.9Fe11.5Al1.5 compound, the fine structure of the magnetic transition from the ferromagnetic (FM) to the antiferromagnetic (AFM) states has been studied carefully by means of magnetization (M) and heat capacity (Cp) measurements. Although a single phase with the cubic NaZn13-type structure (Fm3c) has been proved by the room temperature X-ray diffraction pattern, the phase transition has been clearly found to be a stepwise process in M(T) and Cp(T) curves under proper fields. Due to the strong competition between the FM order and AFM order, the characteristic is especially evident under low fields, weakens gradually with the increasing applied field and finally vanishes when the field is higher than 2 T. This multi-step magnetic transition results from the inhomogeneity of the sample, probably due to the inhomogeneous distribution of Nd atoms.  相似文献   

8.
We present a detailed investigation of the specific heat of Ca3(Ru1-xMx)2O7 (M = Ti, Fe, Mn) single crystals. Depending on the dopant and doping level, three distinct regions are present: a quasitwo-dimensional metallic state with antiferromagnetic (AFM) order formed by ferromagnetic bilayers (AFM-b), a Mott insulating state with G-type AFM order (G-AFM), and a localized state with a mixed AFM-b and G-AFM phase. Our specific heat data provide deep insights into the Mott transitions induced by Ti and Mn doping. We observed not only an anomalous large mass enhancement, but also an additional term in the specific heat, i.e., CT2, in the localized region. The CT2 term is most likely due to long-wavelength excitations with both FM and AFM components. A decrease in the Debye temperature is observed in the G-type AFM region, indicating lattice softening associated with the Mott transition.  相似文献   

9.
熊知杰  王怀玉  丁泽军 《中国物理》2007,16(7):2123-2130
The exchange bias of bilayer magnetic films consisting of ferromagnetic (FM) and antiferromagnetic (AFM) layers in an uncompensated case is studied by use of the many-body Green's function method of quantum statistical theory. The effects of the layer thickness and temperature and the interfacial coupling strength on the exchange bias HE are investigated. The dependence of the exchange bias HE on the FM layer thickness and temperature is qualitatively in agreement with experimental results. When temperature varies, both the coercivity HC and HE decrease with the temperature increasing. For each FM thickness, there exists a least AFM thickness in which the exchange bias occurs, which is called pinning thickness.  相似文献   

10.
The surface of SrFe12O19 coated with a CoO layer reveals a strong exchange bias characterized by magnetic hysteresis loops. The low-temperature coercivity, HC, and the squareness, MR/MS, of a permanent magnet of SrFe12O19/CoO powder prepared by the sol–gel method are enhanced after field cooling through the Néel temperature (TN=290 K) when compared to those after zero-field cooling. The existence of loop shifts and the enhancement of HC indicate that exchange-bias effects, which are induced by the ferromagnetic/antiferromagnetic (FM/AFM) exchange-coupling interactions, are responsible for these behaviors. According to our experimental results, some of the factors controlling the exchange bias, such as FM/AFM interfaces and the CoO amount of the antiferromagnetic layer, are discussed. PACS 75.30.Et; 75.50.Ee; 75.60.Ej; 75.60.Gm; 75.70.Cn  相似文献   

11.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

12.
The distribution of easy axis orientation in perpendicular media is of technological importance because it affects the value of S* (see Fig. 1), which quantifies the switching field distribution (SFD) and hence partially determines the data density achievable on a given medium. The distribution is controlled by the crystallographic orientation of grains and factors such as intergranular exchange and dipolar coupling. Due to strong demagnetising fields in the perpendicular orientation, traditional measurements of remanence as a function of angle are difficult to interpret and have required the use of large-scale computational models. In this work we have utilised the variation of coercivity HC with angle, which has the advantage that at HC the global demagnetising field is zero. Additionally, since such materials follow essentially the Stoner–Wohlfarth mode of reversal, the variation of HC with angle, HC(θ), is much greater than that for the remanence. We find that for (CoCrPt)1−x(SiO2)x, where the level of exchange coupling is controlled, the distribution of magnetic easy axes is narrower when the exchange coupling is reduced, but dipolar coupling between the grains is strong and affects the magnetisation reversal significantly.  相似文献   

13.
LetG be a compact group of transformation (global symmetry group) of a manifoldE (multidimensional universe) with all orbits of the same type (one stratum). We studyG invariant metrics onE and show that there is one-to-one correspondence between those metrics and triples (g μv,A μ ä ,h αβ), whereg μv is a (pseudo-) Riemannian metric on the space of orbits (space-time),A μ ä is a Yang-Mills field for the gauge groupN|H, whereN is the normalizer of the isotropy groupH inG, andh αβ are certain scalar fields characterizing geometry of the orbits (internal spaces). The scalar curvature ofE is expressed in terms of the component fields onM. Examples and model building recipes are also given. The results generalize those of non-abelian Kaluza-Klein theories to the case where internal spaces are not necessarily group manifolds.  相似文献   

14.
The magnetization, M, of dilute Ising ferromagnets with quenched random fields is shown to have accumulation points of poles in each of these fields hi(at hi → 0) and in the external uniform field H (at H → -hi). This occurs for all temperatures for which the nonrandom (zero-field) system has H ≠ 0. If both hi and -hi are possible then M is probably nonanalyti c for many values of hi. This casts doubts on expansions in the random fields.  相似文献   

15.
The crystal structure, magnetism properties, and density of states for FeAs layered compound SrFe2As2 have been investigated by using the density functional theory (DFT) method. The magnetism under a checkerboard nearest neighbor anti-ferromagnetic (NN AFM) and ferromagnetic (FM) order ground-state have been analyzed with substitution for Sr with K ion in Sr1−xKxFe2As2. The results indicate that the distortion of FeAs tetrahedrons is sensitive to the electron doping concentration. The system magnetism was suppressed by K doping in NN-AFM ground state instead of FM. The density of states at Fermi level N(EF) under NN AFM ground state would be regarded as a driving force for the increased Tc of Sr1−xKxFe2As2 system as observed experimentally. Our calculation reflects that NN AFM type spin fluctuation may still exist in the Sr1−xKxFe2As2 system and it may be an origin of strong spin fluctuation in this system besides the spin density wave (SDW) states.  相似文献   

16.
A number of zero-phonon absorption lines ofF aggregate color centers is studied inx-irradiated NaF crystals under uniaxial stress. The color centers associated with the lines are found to exhibit rhombic (D2h, D2, C2v; rotation axes along 〈110〉 and 〈100〉) and monoclinic (C2h, C2, Cs; rotation axis along 〈110〉) symmetries. The transitions of the rhombic color centers correspond to 〈100〉 and 〈110〉 dipoles, those of the monoclinic centers to 〈112〉 and 〈110〉 dipoles. The most prominent line at 5803 Å is due to a 〈112〉 dipole transition within a monoclinic color center. Several models of centers are discussed.  相似文献   

17.
The temperature dependence of the elastic moduli and the Mössbauer effect in Hox,Er1?x, Fe2 cubic Laves compounds (x, between 0.3 and 0.9) has been investigated in the temperature region where spin rotation occurs. The composition-dependence minima in the elastic moduli, and the Mössbauer effect measurements, were used to determine the boundaries between the various directions of easy magnetization in these compounds. The experimental spin orientation diagram was found to deviate from the predictions of a one-ion model based on the rare-earth ions alone. From the Mössbauer effect measurement it was deduced that in compounds for which a spin reorientation was observed, the spin rotates continuously with temperature between the major axes of the cubic symmetry. This was attributed to the contribution of higher-order magnetocrystalline anisotropy constants. The ΔE effect, measured in external magnetic fields up to 25 kOe, was found to be constant, and relatively small, in the holmium composition range of x = 0.45–1.00 in the HoxEr1?xFe2; compounds.  相似文献   

18.
Characteristics of random magnetic anisotropy in ferromagnetic films of amorphous Co90P10 and nanocrystalline Ni75C25, Fe80B4C16, and Co80C20 alloys and also in multilayer films [Co93P7(x)/Pd(14 Å)]20 and [Co90P10(x)/Pd(14 Å)]20 obtained by various technological procedures were studied experimentally. It was found that the spatial dimensionality (d) of the system of ferromagnetically coupled grains (2R c ) in the materials under study determined the exponent in the power dependence of the approach of magnetization to saturation in the region of fields H<2A/MR c 2 . The dependence ΔMH ?1/2 was observed for nanocrystalline and amorphous films with a three-dimensional grain arrangement. The approach to saturation in multilayer films with a two-dimensional grain arrangement in an individual magnetic layer follows the law ΔMH ?1. The main micromagnetic characteristics of random anisotropy, such as the ferromagnetic correlation radius R f and the average anisotropy 〈K〉 of a ferromagnetic domain with a size of 2R f , were determined for multilayer Co/Pd films. Correlation was found between the coercive field and these characteristics of random anisotropy.  相似文献   

19.
In the investigations of antiferromagnetic (AF)/ferromagnetic (FM) bilayer samples, often distinct experimental techniques yield different values for the measured exchange anisotropy field (HE). We propose that the observed discrepancy may be accounted in part by the dependence of the unidirectional anisotropy with the value of the externally applied cooling field (h). Using a simple microscopic model for representing the AF/FM interface, which incorporates the effect of interface roughness, we show that the interface energy between the AF and FM layer indeed varies with h, as recently observed in anisotropic magnetoresistance measurements, lending support to our proposal.  相似文献   

20.
The structural and magnetic properties of Nd0.5−xPrxSr0.5MnO3 (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) system have been investigated. With the substitution of Pr in Nd0.5Sr0.5MnO3, it shows a gradual structure transformation from the Imma orthorhombic symmetry to the tetragonal I4/mcm phase, and the crystallographic transition remains incomplete, even in Pr0.5Sr0.5MnO3. A large bifurcation between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility has been observed below Curie temperature (TC), which is characteristic of coexistence of ferromagnetism (FM) and antiferromagnetism (AFM) at low temperature region. The magnetization of Pr0.5Sr0.5MnO3 is larger than that of Nd0.5Sr0.5MnO3, while Nd0.5Sr0.5MnO3 with more CE-type AFM shows larger magnetization than Nd0.3Pr0.2Sr0.5MnO3, which mixed with CE-type (majority) and A-type (minority) AFM at low temperature, indicating that the magnetization of Nd0.5−xPrxSr0.5MnO3 system is affected by A-site disorder combined with orbital ordering of A-type AFM and CE-type AFM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号