首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We investigate the results of recently published experiments on the quantum behavior of Josephson circuits in terms of the classical modeling based on the resistively and capacitively-shunted (RCSJ) junction model. Our analysis shows evidence for a close analogy between the nonlinear behavior of a pulsed microwave-driven Josephson junction at low temperature and low dissipation and the experimental observations reported for the Josephson circuits. Specifically, we demonstrate that Rabi-oscillations, Ramsey-fringes, and spin-echo observations are not phenomena with a unique quantum interpretation. In fact, they are natural consequences of transients to phase-locking in classical nonlinear dynamics and can be observed in a purely classical model of a Josephson junction when the experimental recipe for the application of microwaves is followed and the experimental detection scheme followed. We therefore conclude that classical nonlinear dynamics can contribute to the understanding of relevant experimental observations of Josephson response to various microwave perturbations at very low temperature and low dissipation.  相似文献   

2.
3.
We compare different approaches to quantum ontology. In particular, we discuss an interpretation of quantum mechanics that we call objective quantum field theory (OQFT), which involves retrocausal fields. Here, objective implies the existence of fields independent of an observer, but not that the results of conjugate measurements are predetermined: the theory is contextual. The ideas and analyses of Einstein and Bohr through to more recent approaches to objective realism are discussed. We briefly describe measurement induced projections, the guided wave interpretation, many-universes, consistent histories and modal theories. These earlier interpretations are compared with OQFT. We argue that this approach is compatible both with Bohr’s quantum complementarity and Einstein’s objective realism.  相似文献   

4.
Speculations about the role of consciousness in physical systems are frequently observed in the literature concerned with the interpretation of quantum mechanics. While only three experimental investigations can be found on this topic in physics journals, more than 800 relevant experiments have been reported in the literature of parapsychology. A well-defined body of empirical evidence from this domain was reviewed using meta-analytic techniques to assess methodological quality and overall effect size. Results showed effects conforming to chance expectation in control conditions and unequivocal non-chance effects in experimental conditions. This quantitative literature review agrees with the findings of two earlier reviews, suggesting the existence of some form of consciousness-related anomaly in random physical systems.  相似文献   

5.
J P Vigier 《Pramana》1985,25(4):397-418
The differences between Einstein and Bohr on the interpretation of quantum mechanics revolved around the question of completeness of the Copenhagen Interpretation. This fundamental problem is examined here in the light of recent neutron interference experiments which allow for novel experimental situations. Exploiting the possibility of neutron spin flip in these experiments, the inadequacy of the Copenhagen interpretation to fully understand the experimental results is brought out. Instead a causal interpretation of quantum mechanics is advocated, in which the neutron, as a particle, does always have a definite space time trajectory but also involves a wave which creates a potential affecting the particle neutron. The reestablishment of definite particle trajectories in the microscopic domain obliges us to reexamine the statistical treatment of ‘identical’ particles, as well as the problem of negative energies and probabilities in relativistic quantum mechanics.  相似文献   

6.
An interpretation of the field-emission images of molecules, impurity ions, and nanostructures placed on the tip of a field-emission microscope is given. It is shown that often such images represent nothing else but the visualization of the wave function of the emitted quantum particle in the momentum space. The results of many earlier experiments are reinterpreted with regard to the results obtained in the present work.  相似文献   

7.
Yu Shi 《Annalen der Physik》2000,9(8):637-648
The famous gedanken experiments of quantum mechanics have played crucial roles in developing the Copenhagen interpretation. They are studied here from the perspective of standard quantum mechanics, with no ontological interpretation involved. Bohr's investigation of these gedanken experiments, based on the uncertainty relation with his interpretation, was the origin of the Copenhagen interpretation and is still widely adopted, but is shown to be not consistent with the quantum mechanical view. We point out that in most of these gedanken experiments, entanglement plays a crucial role, while its buildup does not change the uncertainty of the concerned quantity in the way thought by Bohr. Especially, in the gamma ray microscope and recoiling double‐slit gedanken experiments, we expose the entanglement based on momentum exchange. It is shown that even in such cases, the loss of interference is only due to the entanglement with other degrees of freedom, while the uncertainty relation argument, which has not been questioned up to now, is not right.  相似文献   

8.
We present an option of the experiment with a correlated pair of particles in the entangled state, which provides the effect of a change in the polarization for entangled photons, and demonstrate the reality of all different superposition states and the corresponding vector of the quantum system state; also we analyze possible consequences of this fact. We propose a quantum realism paradigm within the relational paradigm instead of the local realism concept disproved by the experiments on verifying the Bell inequalities. We analyze the results of experimental research of the Leggett inequality violation with respect to the verification of the adequacy of different kinds of nonlocal hidden variable theories and suggest a new way of their evaluation based on the study of the photon cross-correlation suppression after a beam splitter and preparation of quantum squeezed states. We show that the interpretation based on the nonlocal hidden variable theory is inconsistent.  相似文献   

9.
The experimental imaging of electronic orbitals has allowed one to gain a fascinating picture of quantum effects. We here show that the energetically high-lying orbitals that are accessible to experimental visualization in general differ, depending on which approach is used to calculate the orbitals. Therefore, orbital imaging faces the fundamental question of which orbitals are the ones that are visualized. Combining angular-resolved photoemission experiments with first-principles calculations, we show that the orbitals from self-interaction-free Kohn-Sham density functional theory are the ones best suited for the orbital-based interpretation of photoemission.  相似文献   

10.
We analyze three important experimental domains (SQUIDs, molecular interferometry, and Bose-Einstein condensation) as well as quantum-biophysical studies of the neuronal apparatus to argue that (i) the universal validity of unitary dynamics and the superposition principle has been confirmed far into the mesoscopic and macroscopic realm in all experiments conducted thus far; (ii) all observed “restrictions” can be correctly and completely accounted for by taking into account environmental decoherence effects; (iii) no positive experimental evidence exists for physical state-vector collapse; (iv) the perception of single “outcomes” is likely to be explainable through decoherence effects in the neuronal apparatus. We also discuss recent progress in the understanding of the emergence of quantum probabilities and the objectification of observables. We conclude that it is not only viable, but moreover compelling to regard a minimal no-collapse quantum theory as a leading candidate for a physically motivated and empirically consistent interpretation of quantum mechanics.  相似文献   

11.
We have reported earlier magnon assisted transition in the ferromagnetic semiconductor EuO. Recently, Merlin et al. have published similar experiments, but due to an error in line assignments, they disagree with our interpretation. We recall briefly the experimental features and develop the arguments supporting our point of view.  相似文献   

12.
13.
We compute the temperature, voltage, and magnetic field dependences of the conductance oscillations of a model interferometer designed to measure the fractional statistics of the quasiparticles in the fractional quantum Hall effect. The geometry is the same as that used in recent experiments. With appropriate assumptions concerning the relative areas of the inner and outer rings of the interferometer, we find the theoretical results, including the existence of super periodic Aharonov-Bohm oscillations, to be in remarkably good agreement with experiment. We then make additional experimental predictions with no adjustable parameters which, if verified, would confirm the proposed interpretation of the experiment as a measurement of fractional statistics.  相似文献   

14.
经典的波动理论与量子理论均分别对杨氏双缝干涉实验进行了解释。由于两个解释理论一个简单直观、一个复杂抽象,但两者结果一致,使得学生在学习中容易接受波动理论而排斥量子理论。文中通过实验观测了杨氏双缝干涉光场中能量传递与叠加的实际情况,结果显示实验实际情况与波动理论解释明显不相符合,而与量子理论解释完全相符。通过实验,使学生直观地看到波动理论的局限性,并加深学生对量子力学相关理论的理解。  相似文献   

15.
Recent experiments on double photoionization of H2 with photon energies between 160 and 240 eV have revealed body-frame angular distributions that suggest classical two-slit interference effects may be present when one electron carries most of the available energy and the second electron is not observed. We report precise quantum mechanical calculations that reproduce the experimental findings. They reveal that the interpretation in terms of classical diffraction is only appropriate at substantially higher photon energies. At the energies considered in the experiment we offer an alternative explanation based on the mixing of two nondiffractive contributions by circularly polarized light.  相似文献   

16.
The conceptual scheme of the optical polarization experiments on Bell's inequality is discussed. By invoking the distinction between the concepts of state preparation and measumment in quantum mechanics, it is argued that Bell's theorem is not applicable to this class of experiments in the way it is generally done. Consequently, by considering the specific features of the measurements performed hitherto, it is also shown that a local approach can yield the same theoretical prediction as the nonlocal quantum interpretation, even in the absence of other experimental loopholes.  相似文献   

17.
A low-field theory for paramagnetic relaxation enhancement (PRE), appropriate for the outer-sphere relaxation, is presented for the electron spin quantum number S = 1, 3/2, 2, 5/2, 3 and 7/2. The theory is used to calculate the PRE at low magnetic field, as a function of the translational diffusion coefficient, for various values of the electron spin quantum number, for small and fairly large values of the static zero-field splitting (ZFS), and for a given set of parameters determining the electron spin relaxation. We have found earlier that the static ZFS has a profound influence on the electron spin relaxation; such effects are also evident in the present study. Comparisons are made with other existing models for the outer-sphere PRE, and significant differences are found for slowly diffusing systems with large ZFS. The theory is also used to obtain a novel interpretation of experimental data for an acetone solution of a Mn(III) complex.  相似文献   

18.
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrödinger cat states are the norm rather than curiosities generated in physicists’ laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr’s quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics.  相似文献   

19.
In this paper we present a series of computer calculations carried out in order to demonstrate exactly how the de Broglie-Bohm interpretation works for two-particle quantum mechanics. In particular, we show how the de Broglie-Bohm interpretation can account for the essential features of nonrelativistic, two-particle quantum mechanics in terms of well-defined, correlated, individual particle trajectories and spin vectors. We demonstrate exactly how both quantum statistics and the correlations observed in Einstein-Podolsky-Rosen experiments can be explained in terms of nonlocal quantum potentials and nonlocal quantum torques which act on the well-defined individual particle coordinates and spin vectors.  相似文献   

20.
Preparation of a specific quantum state is a required step for a variety of proposed quantum applications. We report an experimental demonstration of optical quantum state inversion in a single semiconductor quantum dot using adiabatic rapid passage. This method is insensitive to variation in the optical coupling in contrast with earlier work based on Rabi oscillations. We show that when the pulse power exceeds a threshold for inversion, the final state is independent of power. This provides a new tool for preparing quantum states in semiconductor dots and has a wide range of potential uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号