首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We present a measurement of the spectral index of density fluctuations between ion and electron scales in solar wind turbulence using the EFI instrument on the ARTEMIS spacecraft. The mean spectral index at 1?AU was found to be -2.75±0.06, steeper than predictions for pure whistler or kinetic Alfvén wave turbulence but consistent with previous magnetic field measurements. The steep spectra are also consistent with expectations of increased intermittency or damping of some of the turbulent energy over this range of scales. Neither the spectral index nor the flattening of the density spectra before ion scales were found to depend on the proximity to the pressure anisotropy instability thresholds, suggesting that they are features inherent to the turbulent cascade.  相似文献   

2.
L. Skrbek 《JETP Letters》2006,83(3):127-131
Quantum turbulence in superfluid He II and in 3He-B that can be regarded as nearly isothermal, isotropic, and homogeneous is discussed within the two-fluid model. A general form of the 3D energy spectrum is proposed: at large length scales, where normal and superfluid eddies are locked together by the mutual friction force, the energy spectrum is essentially classical and includes an inertial range of a Kolmogorov K62 form. With increasing wavenumber k, the normal fluid part of the spectrum terminates due to finite viscosity, while the superfluid part of the spectral energy density changes towards k −3 and then back into Kolmogorov-like k −5/3 again. Agreement with computer simulations and experiments is claimed if account is taken of the turbulent box size and of the energy decay rate. The text was submitted by the author in English.  相似文献   

3.
Small scale clustering of inertial particles and relative velocity of particle pairs have been fully characterized for statistically steady homogeneous isotropic flows. Depending on the particle Stokes relaxation time, the spatial distribution of the disperse phase results in a multi-scale manifold characterized by local particle concentration and voids and, because of finite inertia, the two nearby particles have high probability to exhibit large relative velocities. Both effects might explain the speed-up of particle collision rate in turbulent flows. Recently it has been shown that the large scale geometry of the flow plays a crucial role in organizing small scale particle clusters. For instance, a mean shear preferentially orients particle patterns. In this case, depending on the Stokes time, anisotropic clustering may occur even in the inertial range of scales where the turbulent fluctuations which drive the particles have already recovered isotropy. Here we consider the statistics of particle pair relative velocity in the homogeneous shear flow, the prototypical flow which manifests anisotropic clustering at small scales. We show that the mean shear, by imprinting anisotropy on the large scale velocity fluctuations, dramatically affects the particle relative velocity distribution even in the range of small scales where the anisotropic mechanisms of turbulent kinetic energy production are sub-dominant with respect to the inertial energy transfer which drives the carrier fluid velocity towards isotropy. We find that the particles’ populations which manifest strong anisotropy in their relative velocities are the same which exhibit small scale clustering. In contrast to any Kolmogorov-like picture of turbulent transport these phenomena may persist even below the smallest dissipative scales where the residual level of anisotropy may eventually blow-up. The observed anisotropy of particle relative velocity and spatial configuration is suggested to influence the directionality of the collision probability, as inferred on the basis of the so-called “ghost collision” model.  相似文献   

4.
We consider the induction of a magnetic field in flows of an electrically conducting fluid at low magnetic Prandtl number and large kinetic Reynolds number. Using the separation between the magnetic and kinetic diffusive length scales, we propose a new numerical approach. The coupled magnetic and fluid equations are solved using a mixed scheme, where the magnetic field fluctuations are fully resolved and the velocity fluctuations at small scale are modeled using a large eddy simulation (LES) scheme. We study the response of a forced Taylor-Green flow to an externally applied field: topology of the mean induction and time fluctuations at fixed locations. The results are in remarkable agreement with existing experimental data; a global 1/f behavior at long times is also evidenced.  相似文献   

5.
In this paper we give a formulation of two-dimensional (2D) collisionless magnetohydrodynamic (MHD) turbulence that includes the effects of both electron inertia and electron pressure (or parallel electron compressibility) and is applicable to strongly magnetized collisionless plasmas. We place particular emphasis on the departures from the 2D classical MHD turbulence results produced by the collisionless MHD effects. We investigate the fractal/multi-fractal aspects of spatial intermittency. The fractal model for intermittent collisionless MHD turbulence appears to be able to describe the observed k−1 spectrum in the solar wind. Multi-fractal scaling behaviors in the inertial range are first deduced, and are then extrapolated down to the dissipative microscales. We then consider a parabolic-profile model for the singularity spectrum f (α), as an explicit example of a multi-fractal scenario. These considerations provide considerable insights into the basic mechanisms underlying spatial intermittency in 2D fully developed collisionless MHD turbulence.  相似文献   

6.
We present a quantitative estimate of the anisotropic power and scaling of magnetic field fluctuations in inertial range magnetohydrodynamic turbulence, using a novel wavelet technique applied to spacecraft measurements in the solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the spacecraft-frame spectrum has a spectral index near 2. This can be interpreted as the signature of a population of fluctuations in field-parallel wave numbers with a k(-2)_(||) spectrum but is also consistent with the presence of a "critical balance" style turbulent cascade. We also find, in common with previous studies, that most of the power is contained in wave vectors at large angles to the local magnetic field and that this component of the turbulence has a spectral index of 5/3.  相似文献   

7.
The general Schrödinger equation (GSE) for whistler waves with their group velocity directed along an external magnetic field is derived. The “mean” wave vector of the wave beam may be parallel to or have an angle Θ = arccos(2ω/ωc) with the magnetic field. Applications of GSE to the whistler propagation in density ducts are considered. The results are important for the problem of the self-focusing of whistler waves.  相似文献   

8.
Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.  相似文献   

9.
We present a magnetohydrodynamic (MHD) shell model suitable for computation of various energy fluxes of MHD turbulence for very small and very large magnetic Prandtl numbers Pm; such computations are inaccessible to direct numerical simulations. For small Pm, we observe that both kinetic and magnetic energy spectra scale as k?5/3 in the inertial range, but the dissipative magnetic energy scales as k?11/3exp?(? k/kη). Here the kinetic energy at large length scale feeds the large-scale magnetic field that cascades to small-scale magnetic field, which gets dissipated by Joule heating. The large-Pm dynamo has a similar behaviour except that the dissipative kinetic energy scales as k?13/3. For this case, the large-scale velocity field transfers energy to the large-scale magnetic field, which gets transferred to small-scale velocity and magnetic fields; the energy of the small-scale magnetic field also gets transferred to the small-scale velocity field, and the energy thus accumulated is dissipated by the viscous force.  相似文献   

10.
Using the field theoretic renormalization group technique the model of passively advected weak magnetic field by an incompressible isotropic helical turbulent flow is investigated up to the second order of the perturbation theory (two-loop approximation) in the framework of an extended Kazantsev-Kraichnan model of kinematic magnetohydrodynamics. Statistical fluctuations of the velocity field are taken in the form of a Gaussian distribution with zero mean and defined noise with finite correlations in time. The two-loop analysis of all possible scaling regimes is done and the influence of helicity on the stability of scaling regimes is discussed and shown in the plane of exponents ? ? η, where ? characterizes the energy spectrum of the velocity field in the inertial range Ek 1 ? 2ε, and η is related to the correlation time at the wave number k which is scaled as k ?2 + η. It is shown that in non-helical case the scaling regimes of the present vector model are completely identical and have also the same properties as those obtained in the corresponding model of passively advected scalar field. Besides, it is also shown that when the turbulent environment under consideration is helical then the properties of the scaling regimes in models of passively advected scalar and vector (magnetic) fields are essentially different. The results demonstrate the importance of the presence of a symmetry breaking in a given turbulent environment for investigation of the influence of an internal tensor structure of the advected field on the inertial range scaling properties of the model under consideration and will be used in the analysis of the influence of helicity on the anomalous scaling of correlation functions of passively advected magnetic field.  相似文献   

11.
The PWI/WFC data onboard Geotail during one burst time interval when Geotail is skimming a magnetic reconnection diffusion region in the near-Earth magnetotail is carefully analyzed.Both the whistler-mode wave and the electrostatic solitary wave are found within the region with density depletion on the boundary layer near the magnetic reconnection X-line.The whistler-mode wave is electromagnetic whistler wave propagating quasi-parallel to the ambient field with a small angle between the wave vector and the ambient magnetic field.The whistler-mode wave associated with ESWs suggests that enhanced electromagnetic whistler-mode fluctuations can also be generated after the decay of the ESWs,which is different from the 2-D PIC simulation results.  相似文献   

12.
A. Kendl 《Physics letters. A》2011,375(35):3138-3141
A semi-classical nonlinear collisional drift wave model for dense magnetized plasmas is developed and solved numerically. The effects of fluid electron density fluctuations associated with quantum statistical pressure and quantum Bohm force are included, and their influences on the collisional drift wave instability and the resulting fully developed nanoscale drift wave turbulence are discussed. It is found that the quantum effects increase the growth rate of the collisional drift wave instability, and introduce a finite de Broglie length screening on the drift wave turbulent density perturbations. The relevance to nanoscale turbulence in nonuniform dense magnetoplasmas is discussed.  相似文献   

13.
Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show the spectral behavior of classical Kolmogorov fluid turbulence over an inertial subrange and departures from this at short wavelengths, where energy should be dissipated. Here we present the first measurements of the electric field fluctuation spectrum over the inertial and dissipative wave number ranges in a Beta > or approximately = 1 plasma. The k(-5/3) inertial subrange is observed and agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed in this regime is shown to be consistent with the Alfvén speed. At smaller wavelengths krho(i) > or = 1 the electric spectrum is enhanced and is consistent with the expected dispersion relation of short-wavelength kinetic Alfvén waves. Kinetic Alfvén waves damp on the solar wind ions and electrons and may act to isotropize them. This effect may explain the fluidlike nature of the solar wind.  相似文献   

14.
We propose a phenomenological theory of strong incompressible magnetohydrodynamic turbulence in the presence of a strong large-scale external magnetic field. We argue that in the inertial range of scales, magnetic-field and velocity-field fluctuations tend to align the directions of their polarizations. However, the perfect alignment cannot be reached; it is precluded by the presence of a constant energy flux over scales. As a consequence, the directions of shear-Alfvén fluid and magnetic-field fluctuations at each scale lambda become effectively aligned within the angle phi(lambda) proportional to lambda (1/4), which leads to scale-dependent depletion of the nonlinear interaction and to the field-perpendicular energy spectrum E(k(perpendicular)) proportional to k(perpendicular)(-3/2). Our results may be universal, i.e., independent of the external magnetic field, since small-scale fluctuations locally experience a strong field produced by large-scale eddies.  相似文献   

15.
Wave-number spectra of magnetic field fluctuations are directly determined in the terrestrial foreshock region (upstream of a quasiparallel collisionless shock wave) using four-point Cluster spacecraft measurements. The spectral curve is characterized by three ranges reminiscent of turbulence: energy injection, inertial, and dissipation range. The spectral index for the inertial range spectrum is close to Kolmogorov's slope, -5/3. On the other hand, the fluctuations are highly anisotropic and intermittent perpendicular to the mean magnetic field direction. These results suggest that the foreshock is in a weakly turbulent and intermittent state in which parallel propagating Alfvén waves interact with one another, resulting in the phase coherence or the intermittency.  相似文献   

16.
The results of experiments studying the propagation of a high-frequency whistler wave in a magnetized plasma duct in the presence of an intense low-frequency wave also related to the whistler frequency range are reported. Amplitude-frequency modulation of the high-frequency whistler wave trapped in the duct was observed. A deep amplitude modulation of the signal that can lead to its splitting into separate wave packets is observed. It is shown that an increase in the wave propagation path leads to a broadening of the wave frequency spectrum and to a shift of the signal spectrum predominantly toward the red side. The transformation of the frequency of the high-frequency wave is related with the time-dependent perturbation of the external magnetic field by the field of the low-frequency whistler wave (the relative perturbation of the magnetic field δB/B≤5×10?2).  相似文献   

17.
Using the field theoretic renormalization group technique the model of a passive vector field advected by an incompressible turbulent flow is investigated up to the second order of the perturbation theory (two-loop approximation). The turbulent environment is given by statistical fluctuations of the velocity field that has a Gaussian distribution with zero mean and defined noise with finite correlations in time. Two-loop analysis of all possible scaling regimes in general d-dimensional space is done in the plane of exponents ? ? η, where ? characterizes the energy spectrum of the velocity field in the inertial range Ek 1 ? 2ε, and η is related to the correlation time at the wave number k which is scaled as k ?2 + η. It is shown that the scaling regimes of the present model of vector advection have essentially different properties than the scaling regimes of the corresponding model of passively advected scalar quantity. The results demonstrate the fact that within the present model of passively advected vector field the internal tensor structure of the advected field can have nontrivial impact on the diffusion processes deep inside in the inertial interval of given turbulent flow.  相似文献   

18.
We present experimental results about rising and decaying gravity wave turbulence in a large laboratory flume. We consider the time evolution of the wave energy spectral components in ω- and k-domains and demonstrate that emerging wave turbulence can be characterized by two time scales—a short dynamical scale due to nonlinear wave interactions and a longer kinetic time scale characterizing formation of a stationary wave energy spectrum. In the decay regime we observed the maximum of the wave energy spectrum decreasing in time initially as the power law, ∝t ?1/2, as predicted by the weak turbulence theory, and then exponentially due to viscous friction.  相似文献   

19.
We study the effect of dimerization of TMTSF molecules and the effect of magnetic field (Zeeman splitting) on the phase competition in quasi one-dimensional organic superconductors (TMTSF)2X by applying the random phase approximation method. As for the dimerization effect, we conclude that due to the decrease of the dimerization, which corresponds to applying the pressure and cooling, spin and charge density wave states are suppressed and give way to a superconducting state. As for the magnetic field effect, we find generally that spin-triplet pairing mediated by a coexistence of 2kF spin and 2kF charge fluctuations can be strongly enhanced by applying magnetic field rather than triplet pairing due to a ferromagnetic spin fluctuations. Applying the above idea to (TMTSF)2X compounds, a magnetic field induced singlet-triplet transition is consistent with above mechanism in (TMTSF)2ClO4.  相似文献   

20.
Channels of excess plasma density aligned along the magnetic field guide whistler without spatial divergence. If the whistler wave is of sufficient intensity it maintains the channel through its own radiation pressure which pushes the plasma towards regions of increasing wave amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号