首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transitions from equilibrium to quasiperiodicity and from a two-cycle to a quasiperiodic regime are studied in a ring of unidirectionally-coupled nonidentical logistic maps. The former scenario is realized through a “soft” (Neimark–Sacker) bifurcation, while the latter through a “hard” (saddle-node) bifurcation. Special attention is paid on a noise-induced transition through “hard” bifurcation, where a phenomenon of structural stabilization of the quasiperiodic system near the bifurcation point is observed and analyzed in detail.  相似文献   

2.
We consider an extension of Kuramoto’s model of coupled phase oscillators where oscillator pairs interact with different strengths. When the coupling coefficient of each pair can be separated into two different factors, each one associated to an oscillator, Kuramoto’s theory for the transition to synchronization can be explicitly generalized, and the effects of coupling heterogeneity on synchronized states can be analytically studied. The two factors are respectively interpreted as the weight of the contribution of each oscillator to the mean field, and the coupling of each oscillator to that field. We explicitly analyze the effects of correlations between those weights and couplings, and show that synchronization can be completely inhibited when they are strongly anti-correlated. Numerical results validate the theory, but suggest that finite-size effect are relevant to the collective dynamics close to the synchronization transition, where oscillators become entrained in synchronized frequency clusters.  相似文献   

3.
In this work, we study the effects of embedding a system of non-linear phase oscillators in a two-dimensional scale-free lattice. In order to analyze the effects of the embedding, we consider two different topologies. On the one hand, we consider a scale-free complex network where no constraint on the length of the links is taken into account. On the other hand, we use a method recently introduced for embedding scale-free networks in regular Euclidean lattices. In this case, the embedding is driven by a natural constraint of minimization of the total length of the links in the system. We analyze and compare the synchronization properties of a system of non-linear Kuramoto phase oscillators, when interactions between the oscillators take place in these networks. First, we analyze the behavior of the Kuramoto order parameter and show that the onset of synchronization is lower for non-constrained lattices. Then, we consider the behavior of the mean frequency of the oscillators as a function of the natural frequency for the two different networks and also for different values of the scale-free exponent. We show that, in contrast to non-embedded lattices that present a mean-field-like behavior characterized by the presence of a single cluster of synchronized oscillators, in embedded lattices the presence of a diversity of synchronized clusters at different mean frequencies can be observed. Finally, by considering the behavior of the mean frequency as a function of the degree, we study the role of hubs in the synchronization properties of the system.  相似文献   

4.
This Letter presents an analytical study of synchronization in an array of coupled deterministic Boolean networks. A necessary and sufficient criterion for synchronization is established based on algebraic representations of logical dynamics in terms of the semi-tensor product of matrices. Some basic properties of a synchronized array of Boolean networks are then derived for the existence of transient states and the upper bound of the number of fixed points. Particularly, an interesting consequence indicates that a “large” mismatch between two coupled Boolean networks in the array may result in loss of synchrony in the entire system. Examples, including the Boolean model of coupled oscillations in the cell cycle, are given to illustrate the present results.  相似文献   

5.
G Ambika  N V Sujatha 《Pramana》2000,54(5):751-761
We present a graphical analysis of the mechanisms underlying the occurrences of bubbling sequences and bistability regions in the bifurcation scenario of a special class of one dimensional two parameter maps. The main result of the analysis is that whether it is bubbling or bistability is decided by the sign of the third derivative at the inflection point of the map function.  相似文献   

6.
We study the mechanism of formation of synchronized clusters in coupled maps on networks with various connection architectures. The nodes in a cluster are self-synchronized or driven-synchronized, based on the coupling strength and underlying network structures. A smaller coupling strength region shows driven clusters independent of the network rewiring strategies, whereas a larger coupling strength region shows the transition from the self-organized cluster to the driven cluster as network connections are rewired to the bi-partite type. Lyapunov function analysis is performed to understand the dynamical origin of cluster formation. The results provide insights into the relationship between the topological clusters which are based on the direct connections between the nodes, and the dynamical clusters which are based on the functional behavior of these nodes.  相似文献   

7.
We show that the threshold of complete synchronization in a lattice of coupled non-smooth chaotic maps is determined by linear stability along the directions transversal to the synchronization subspace. We examine carefully the synchronization time and show that an inadequate observation of the system evolution leads to wrong results. We present both careful numerical experiments and a rigorous mathematical explanation confirming this fact, allowing for a generalization involving hyperbolic coupled map lattices.  相似文献   

8.
Synchronization transition in gap-junction-coupled leech neurons   总被引:1,自引:0,他引:1  
Real neurons can exhibit various types of firings including tonic spiking, bursting as well as silent state, which are frequently observed in neuronal electrophysiological experiments. More interestingly, it is found that neurons can demonstrate the co-existing mode of stable tonic spiking and bursting, which depends on initial conditions. In this paper, synchronization in gap-junction-coupled neurons with co-existing attractors of spiking and bursting firings is investigated as the coupling strength gets increased. Synchronization transitions can be identified by means of the bifurcation diagram and the correlation coefficient. It is illustrated that the coupled neurons can exhibit different types of synchronization transitions between spiking and bursting when the coupling strength increases. In the course of synchronization transitions, an intermittent synchronization can be observed. These results may be instructive to understand synchronization transitions in neuronal systems.  相似文献   

9.
We consider iterated maps with a reflectional symmetry. Possible bifurcations in such systems include period-doubling bifurcations (within the symmetric subspace) and symmetry-breaking bifurcations. By using a second parameter, these bifurcations can be made to coincide at a mode interaction. By reformulating the period-doubling bifurcation as a symmetry-breaking bifurcation, two bifurcation equations with Z2×Z2 symmetry are derived. A local analysis of solutions is then considered, including the derivation of conditions for a tertiary Hopf bifurcation. Applications to symmetrically coupled maps and to two coupled, vertically forced pendulums are described.  相似文献   

10.
Neuron activity presents two timescales, a fast one related to action-potential spiking, and a slow timescale in which bursting takes place. Bursting activity in neuron ensembles can be synchronized, meaning the adjustment of the bursting phases due to coupling. We investigated bursting synchronization in a non-locally coupled lattice using a two-dimensional map to describe neuron activity. The coupling involves all sites in a lattice, the corresponding strength decreasing with the lattice distance in a power-law fashion. We observed bursting synchronization for wide intervals of the coupling parameters. We also investigated the bursting synchronization of the ensemble with an external time-periodic signal applied to one or more selected neurons.  相似文献   

11.
We investigate the parametric evolution of riddled basins related to synchronization of chaos in two coupled piecewise-linear Lorenz maps. Riddling means that the basin of the synchronized attractor is shown to be riddled with holes belonging to another basin in an arbitrarily fine scale, which has serious consequences on the predictability of the final state for such a coupled system. We found that there are wide parameter intervals for which two piecewise-linear Lorenz maps exhibit riddled basins (globally or locally), which indicates that there are riddled basins in coupled Lorenz equations, as previously suggested by numerical experiments. The use of piecewise-linear maps makes it possible to prove rigorously the mathematical requirements for the existence of riddled basins.  相似文献   

12.
By choosing a dynamical system with d different couplings, one can rearrange a system based on the graph with a given vertex dependent on the dynamical system elements. The relation between the dynamical elements (coupling) is replaced by a relation between the vertexes. Based on the E 0 transverse projection operator, we addressed synchronization problem of an array of the linearly coupled map lattices of identical discrete time systems. The synchronization rate is determined by the second largest eigenvalue of the transition probability matrix. Algebraic properties of the Bose-Mesner algebra with an associated scheme with definite spectrum has been used in order to study the stability of the coupled map lattice. Associated schemes play a key role and may lead to analytical methods in studying the stability of the dynamical systems. The relation between the coupling parameters and the chaotic region is presented. It is shown that the feasible region is analytically determined by the number of couplings (i.e. by increasing the number of coupled maps, the feasible region is restricted). It is very easy to apply our criteria to the system being studied and they encompass a wide range of coupling schemes including most of the popularly used ones in the literature.   相似文献   

13.
We study the bifurcations of two parameter families of circle maps that are similar tof b,w (x)=x+w+(b/2) sin (2x) (mod1). The bifurcation diagram is constructed in terms of setsT r , whereT r is the set of parameter values (b, w) for whichf b, w has an orbit with rotation numberr. We show that the known structure whenb<1 (forr rational,T r is an Arnol'd tongue and forr irrational, it is an arc) extends nicely into the regionb>1, wheref b, w is no longer injective and can have an interval of rotation numbers. Specifically, the tongues overlap in a uniform, monotonic manner and forr irrational,T r opens into a tongue. Our other theorems give information about the dynamics off b, w (e.g., bistability or aperiodicity) for (b, w) in various subsets of parameter space.  相似文献   

14.
D.H. Ji  W.J. Yoo  S.M. Lee 《Physics letters. A》2010,374(10):1218-6481
In this Letter, the synchronization problem for a class of complex dynamical networks in which every identical node is a Lur'e system with time-varying delay is considered. A delay-dependent synchronization criterion is derived for the synchronization of complex dynamical network that represented by Lur'e system with sector restricted nonlinearities. The derived criterion is a sufficient condition for absolute stability of error dynamics between the each nodes and the isolated node. Using a convex representation of the nonlinearity for error dynamics, the stability condition based on the discretized Lyapunov-Krasovskii functional is obtained via LMI formulation. The proposed delay-dependent synchronization criterion is less conservative than the existing ones. The effectiveness of our work is verified through numerical examples.  相似文献   

15.
We study sets of genetic networks having stochastic oscillatory dynamics. Depending on the coupling topology we find regimes of phase synchronization of the dynamical variables. We consider the effect of time-delay in the interaction and show that for suitable choices of delay parameter, either in-phase or anti-phase synchronization can occur.   相似文献   

16.
Rational maps, monopoles and skyrmions   总被引:1,自引:0,他引:1  
We discuss the similarities between BPS monopoles and skyrmions, and point to an underlying connection in terms of rational maps between Riemann spheres. This involves the introduction of a new ansatz for Skyrme fields. We use this to construct good approximations to several known skyrmions, including all the minimal energy configurations up to baryon number nine, and some new solutions such as a baryon number seventeen Skyrme field with the truncated icosahedron structure of a buckyball.

The new approach is also used to understand the low-lying vibrational modes of skyrmions, which are required for quantization. Along the way we discover an interesting Morse function on the space of rational maps which may be of use in understanding the Sen forms on the monopole moduli spaces.  相似文献   


17.
In this Letter, we study the synchronization for delayed complex networks by adjusting time-varying coupling strengths. Under some assumptions, the update laws of the coupling strengths are obtained to realize the synchronization based on Lassalle-Yoshizawa theorem. For the given delayed complex network, we can always find appropriate coupling strengths to achieve the synchronization. Compared with the existing results, the update laws don't need the information of the characteristics of the identical node and the coupling matrix. The state-dependencies of coupling strengths coupled to the dynamics of the nodes in a way to enhance synchronization. An example shows the proposed theoretical result is feasible and effective.  相似文献   

18.
We present the results of an extensive numerical study on the phenomenon of stochastic resonance in a bimodal cubic map. Both Gaussian random noise as well as deterministic chaos are used as input to drive the system between the basins. Our main result is that when two identical systems capable of stochastic resonance are coupled, the SNR of either system is enhanced at an optimum coupling strength. Our results may be relevant for the study of stochastic resonance in biological systems.  相似文献   

19.
Synchronization in different types of weighted networks based on a scale-free weighted network model is investigated. It has been argued that heterogeneity suppresses synchronization in unweighted networks [T. Nishikawa, A.E. Motter, Y.C. Lai, F.C. Hoppensteadt, Phys. Rev. Lett. 91 (2003) 014101]. However, it is shown in this work that as the network becomes more heterogeneous, the synchronizability of Type I symmetrically weighted networks, and Type I and Type II asymmetrically weighted networks is enhanced, while the synchronizability of Type II symmetrically weighted networks is weakened.  相似文献   

20.
In this study, the operating conditions to obtain complete synchronization in two quantum cascade lasers with mutual optoelectronic coupling are analyzed. Synchronization properties and the effect of parameter mismatches on synchronization quality are investigated. The present simulation shows that the complete synchronization can be realized under suitable system parameters. The results of the present simulation indicate that the significant effects of coupling strength, photon lifetime and gain stages number on the synchronization quality. On the other hand, the present results indicate that the insignificant effect of the feedback delay time, the coupling delay time and the synchronization can occur at any delay-time conditions (DTCs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号