首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The thermodynamic properties of an In Sb quantum dot have been investigated in the presence of Rashba spin–orbit interaction and a static magnetic field. The energy spectrum and wave-functions for the system are obtained by solving the Schrodinger wave-equation analytically. These energy levels are employed to calculate the specific heat, entropy,magnetization and susceptibility of the quantum dot system using canonical formalism. It is observed that the system is susceptible to maximum heat absorption at a particular value of magnetic field which depends on the Rashba coupling parameter as well as the temperature. The variation of specific heat shows a Schottky-like anomaly in the low temperature limit and rapidly converges to the value of 2kB with the further increase in temperature. The entropy of the quantum dot is found to be inversely proportional to the magnetic field but has a direct variation with temperature. The substantial effect of Rashba spin–orbit interaction on the magnetic properties of quantum dot is observed at low values of magnetic field and temperature.  相似文献   

2.
The thermoelectric and the thermospin transport properties,including electrical conductivity,Seebeck coefficient,thermal conductivity,and thermoelectric figure of merit,of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique.The periodic Anderson model is used to describe the quantum dot system,the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered.The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects.We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only.  相似文献   

3.
The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique. The periodic Anderson model is used to describe the quantum dot system, the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered. The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects. We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only.  相似文献   

4.
With the help of the nonequilibrium Green's function method, the quantum pump in an Aharonov-Bohm interferometer with a quantum dot driven by an ac field are studied theoretically. The ac field applied to the quantum dot may give rise to a pumped charge current at zero-bias voltage in the presence of a nonzero magnetic flux. The possibility of manipulating the pumped charge current is explored by tuning the dot level, the magnetic flux, the coupling strength and the ac field. By making use of various tunings, the magnitude and direction of the pumped charge current can be well controlled. Furthermore, the possibility to generate a pure spin current in the presence of the Rashba spin-orbit interaction has been discussed, which provides an idea for the design of a spin pump electrically.  相似文献   

5.
B Gisi  S Sakiroglu  &#  Sokmen 《中国物理 B》2016,25(1):17103-017103
In this work, we investigate the effects of interplay of spin–orbit interaction and in-plane magnetic fields on the electronic structure and spin texturing of parabolically confined quantum wire. Numerical results reveal that the competing effects between Rashba and Dresselhaus spin–orbit interactions and the external magnetic field lead to a complicated energy spectrum. We find that the spin texturing owing to the coupling between subbands can be modified by the strength of spin–orbit couplings as well as the magnitude and the orientation angle of the external magnetic field.  相似文献   

6.
量子点双链中电子自旋极化输运性质   总被引:1,自引:0,他引:1       下载免费PDF全文
安兴涛  穆惠英  咸立芬  刘建军 《物理学报》2012,61(15):157201-157201
利用非平衡格林函数方法, 研究了与单个量子点耦合的量子点双链中电子自旋极化输运性质. 由于系统中Rashba自旋轨道耦合产生的自旋相关的相位, 电子通过上下两种路径时, 自旋不同的电子干涉情况不同, 从而导致了电极中的自旋极化流. 左右两电极间的偏压使单个量子点中的自旋积聚在很大能量区域内能够保持较大的值. 由于系统结构的左右不对称, 正负偏压下自旋积聚情况完全不同. 这些计算结果将有助于实验上设计新型的自旋电子学器件.  相似文献   

7.
We present a theoretical study of the energy levels with two-dimensional ring confining potential in the presence of the Rashba spin-orbit interaction. The features of some low-lying states in various strengths of the Rashba spin-orbit interaction are investigated. The Rashba spin-orbit splitting can a/so be influenced by the width of the potential barrier. The computed results show that the spin-polarized electronic states can be more easily achieved in a weakly confined dot when the confinement strength for the Rashba spin-orbit interaction is larger than a critical value.  相似文献   

8.
We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.  相似文献   

9.
白继元  贺泽龙  李立  韩桂华  张彬林  姜平晖  樊玉环 《物理学报》2015,64(20):207304-207304
设计一个两端线型双量子点分子Aharonov-Bohm (A-B)干涉仪. 采用非平衡格林函数技术, 理论研究无含时外场作用下的体系电导和引入含时外场作用下的体系平均电流. 在不考虑含时外场时, 调节点间耦合强度或磁通可以诱导电导共振峰劈裂. 控制穿过A-B干涉仪磁通的有无, 实现了共振峰电导数值在0与1之间的数字转换, 为制造量子开关提供了一个新的物理方案. 同时借助磁通和Rashba自旋轨道相互作用, 获得了自旋过滤. 当体系引入含时外场时, 平均电流曲线展示了旁带效应. 改变含时外场的振幅, 实现了体系平均电流的大小与位置的有效控制, 而调节含时外场的频率, 则可以实现平均电流峰与谷之间的可逆转换. 通过调节磁通与Rashba自旋轨道相互作用, 与自旋相关的平均电流亦得到有效控制. 研究结果为开发利用耦合多量子点链嵌入A-B 干涉仪体系电输运性质提供了新的认知. 上述结果可望对未来的量子器件设计与量子计算发挥重要的指导作用.  相似文献   

10.
本文基于Lee-Low-Pines幺正变换法,采用Tokuda改进的线性组合算符法研究了Rashba自旋-轨道相互作用效应下量子盘中强耦合磁极化子的性质.结果表明,磁极化子的相互作用能Eint的取值随量子盘横向受限强度ω0、外磁场的回旋频率ωc、电子-LO声子耦合强度α和量子盘厚度L的变化均与磁极化子的状态性质密切相关;磁极化子的平均声子数N随ωc,ω0和α的增加而增大,随L的增加而振荡减小;在Rashba自旋-轨道相互作用效应影响下磁极化子的有效质量将劈裂为m*+,m*-两种,它们随ωc,ω0和α的增加而增大,随L的增加而振荡减小;在研究量子盘中磁极化子问题时,电子-LO声子耦合和Rashba自旋-轨道相互作用效应的影响不可忽略,但Rashba自旋-轨道相互作用和极化子效应对磁极化子的影响只有在电子运动的速率较慢时显著.  相似文献   

11.
In this article we study the impact of the spin-orbit interaction on the electron quantum confinement for narrow gap semiconductor quantum dots. The model formulation includes: (1) the effective one-band Hamiltonian approximation; (2) the position- and energy-dependent quasi-particle effective mass approximation; (3) the finite hard wall confinement potential; and (4) the spin-dependent Ben Daniel-Duke boundary conditions. The Hartree-Fock approximation is also utilized for evaluating the characteristics of a two-electron quantum dot system. In our calculation, we describe the spin-orbit interaction which comes from both the spin-dependent boundary conditions and the Rashba term (for two-electron quantum dot system). It can significantly modify the electron energy spectrum for InAs semiconductor quantum dots built in the GaAs matrix. The energy state spin-splitting is strongly dependent on the dot size and reaches an experimentally measurable magnitude for relatively small dots. In addition, we have found the Coulomb interaction and the spin-splitting are suppressed in quantum dots with small height. Received 15 May 2001 / Received in final form 14 May 2002 Published online 13 August 2002  相似文献   

12.
Here we have investigated the influence of magnetic field and confinement potential on nonlinear optical property, third harmonic generation (THG) of a parabolically confinement quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of confining potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate that an increase of Rashba spin orbit interaction coefficient produces strong effect on the peak positions of THG. The role of confinement strength and spin orbit interaction strength as control parameters on THG have been demonstrated.  相似文献   

13.
The sum-frequency generation (SFG) is theoretically studied in a quantum dot (QD) through the framework of the effective-mass approximation and compact density matrix approach. QD is spherical with the parabolic potential confinement, under applied electric field and in the presence of Rashba spin-orbit interaction (SOI). Using the computed energies and eigenkets, the second-order susceptibility of SFG has been also calculated as a function of radius of QD, spin–orbit interaction strength and the applied electric field. The effects of Rashba SOI strength, radius of QD and the applied electric field on the second-order of susceptibility coefficient are considered.  相似文献   

14.
贺泽龙  白继元  李鹏  吕天全 《物理学报》2014,63(22):227304-227304
利用非平衡格林函数方法, 理论研究T型双量子点分子Aharonov-Bohm (A-B)干涉仪的电荷及其自旋输运性质. 通过控制T型双量子点分子内量子点间有无耦合, 能够实现在同一电子能级位置处分别出现共振和反共振状态, 根据此性质, 能将体系设计成量子开关器件. 当将两个完全相同的T型双量子点分子分别嵌入A-B干涉仪两臂中时, 磁通取适当数值, 能够出现完全的量子相消干涉. 通过调节量子点能级、左右两电极间的偏压和Rashba自旋轨道相互作用强度, 可对体系自旋流进行调控. 关键词: 非平衡格林函数 T型双量子点分子 Aharonov-Bohm干涉仪 自旋输运  相似文献   

15.
We demonstrate that an equilibrium spin current in a 2D electron gas with Rashba spin-orbit interaction (Rashba medium) results in a mechanical torque on a substrate near an edge of the medium. If the substrate is a cantilever, the mechanical torque displaces the free end of the cantilever. The effect can be enhanced and tuned by a magnetic field. Observation of this displacement would be an effective method to prove the existence of equilibrium spin currents. The analysis of edges of the Rashba medium demonstrates the existence of localized edge states. They form a 1D continuum of states. This suggests a new type of quantum wire: spin-orbit quantum wire.  相似文献   

16.
Based on the effective mass approximation, the magnetic and thermal properties of parabolic GaAs quantum dot have been investigated in the presence of Rashba Spin-Orbit interaction (RSOI), donor impurity and applied magnetic and electric fields. The exact diagonalization method has been used to solve the Hamiltonian of an electron confined in a quantum dot (QD) and obtain the eigenenergies and the binding energy of the donor impurity as a function of various QD physical parameters. We have shown the dependence of the average statistical energy, magnetization, magnetic susceptibility and heat capacity of the donor impurity in the QD on: the Rashba interaction parameter, the magnetic and electric fields, confining frequency, and temperature. The results reveal that these parameters can tune the magnetic properties of the GaAs quantum dot and flip the sign of magnetic susceptibility from negative (diamagnetic) to positive (paramagnetic) type material.  相似文献   

17.
Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.  相似文献   

18.
The second harmonic generation (SHG) coefficients for a disk shaped quantum dot (DSQD) in the magnetic field are studied in the presence of spin-orbit interactions (SOI). The spin-orbit terms we have used in our calculations are both Rashba and Dresselhaus. We have shown that the presence of SOI modifies the SHG terms. In addition, it has been shown that SOI coupling terms influence the spectrum of DSQD resulting in defined changes in the harmonic generation.  相似文献   

19.
The effect of Dresselhauss spin-orbit coupling on transport and thermodynamic properties of a non-interacting two-dimensional electron gas (2DEG) is investigated. The Hamiltonian used also includes a tilted magnetic field and a Rashba spin-orbit interaction. The Dresselhauss spin-orbit interaction, likewise the Rashba spin-orbit interaction, introduces a beating pattern in the conductivity tensor and in the magnetization along the field direction. A method to estimate the contribution of the Rashba and Dresselhauss interactions to the beating pattern is given using the periodicity of the beating patterns.  相似文献   

20.
采用改进的线性组合算符和幺正变换的方法研究了Rashba效应影响下量子点中弱耦合束缚极化子的性质,导出了Rashba效应影响下量子点中弱耦合束缚极化子的振动频率、有效质量、基态分裂能和相互作用能。数值计算结果表明随Rashba自旋-轨道耦合常数的增加,由于声子作用产生的附加能量能对零磁场时自旋分裂能的影响占有绝对优势。库仑势对束缚极化子的基态能量的影响同时也占有绝对优势。所以,研究Rashba自旋轨道相互作时声子的影响不可忽略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号