首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.  相似文献   

2.
Relations determining the number of photons in an electromagnetic field are considered from the point of view of a classical electromagnetic field. A relativistically invariant expression is obtained for the number of emitted photons in terms of charges and currents producing the electromagnetic field. Examples are considered for calculating the numbers of photons in the electromagnetic field for the case of the electric dipole radiation field, as well as the field of a finite and spatially restricted electromagnetic pulse.  相似文献   

3.
It is shown using a classical wave theory approach that photons and neutrinos have different propagation properties in curved space-time. It is also shown that neutrinos have the anomalous property that the sign of their energy density may change as they propagate, and they may even become ghost neutrinos in some regions.  相似文献   

4.
We show that the existence of low-scale gravity at the TeV scale could lead to a direct production of photons with energy above 1022 eV due to annihilation of ultrahigh-energy neutrinos on relic massive neutrinos of the galactic halo. Air showers initialized in the terrestrial atmosphere by these ultraenergetic photons could be collected in near future by the new generation of cosmic ray experiments.  相似文献   

5.
Neutrino     
Neutrinos are the only fundamental fermions which have no electric charges. Because of that neutrinos have no direct electromagnetic interaction and at relatively small energies they can take part only in weak processes with virtual W ± and Z 0 bosons. Neutrino masses are many orders of magnitude smaller than masses of charged leptons and quarks. These two circumstances make neutrinos unique, special particles. The history of the neutrino is very interesting, exciting and instructive. We try here to follow the main stages of the neutrino history starting from the famous Pauli letter and finishing with the discovery and study of neutrino oscillations. Outstanding contribution to the neutrino physics of Bruno Pontecorvo is discussed in some details.  相似文献   

6.
This paper is a continuation of the article “The Isotopic Field-Charge Assumption Applied to the Electromagnetic Interaction”. It continues the discussion and consequences of the extended Dirac equation in the presence of isotopic mass and electric charges, and a kinetic gauge field. In compliance with the author’s previous papers (Darvas in Concepts Phys. VI(1):3–16, 2009; Int. J. Theor. Phys. 50(10):2961–2991, 2011; Int. J. Theor. Phys., 2013), there appears a second conserved Noether current in the interaction between two electric charges in the presence of isotopic electric charges and a kinetic field. This second conserved current involves the conservation of the isotopic electric charge spin, and that predicts the existence of quanta of the kinetic field (dions associated with the photons). It is concluded that with the discussed conditions, the electromagnetic interaction should be mediated by photons and their dion partners together. The conclusions give physical meaning, among others, to the electric moment and to a virtual coupling spin.  相似文献   

7.
Some of the proposed explanations for the origin of ultrahigh-energy cosmic rays invoke new sources of energetic photons (e.g., topological defects, relic particles, etc.). At high redshift, when the cosmic microwave background has a higher temperature but the radio background is low, the ultrahigh-energy photons can generate neutrinos through pair production of muons and pions. The resulting diffuse background of 10(17) eV neutrinos can be detected by future experiments.  相似文献   

8.
We report on the observation of second-harmonic generation (SHG) from electrically charged microdroplets while they are excited with femtosecond laser pulses. The intense SHG emission results from chi(3) coupling between two photons of the incident laser pulse and the electrostatic field induced by the surface charges. For Iinc= 2 x 10(12) W/cm2, we estimate the second-harmonic emission to be ISHG= 2.5 x 10(3) photons per droplet and per pulse. The possibility of using SHG to measure remotely the electric charge of water droplets in thunderclouds is discussed.  相似文献   

9.
We consider disintegration of deuteron by low energy neutrinos or antineutrinos due to their electromagnetic form factors. Effects of magnetic or electric dipole moments, electric charge radii and anapole moments of neutrinos are taken into account.  相似文献   

10.
Yosef Nir  Yael Shadmi 《Pramana》2004,63(6):1407-1416
We argue that neutrino flavor parameters may exhibit features that are very different from those of quarks and charged leptons. Specifically, within the Proggatt-Nielsen (FN) framework, charged fermion parameters depend on the ratio between two scales, while for neutrinos a third scale — that of lepton number breaking — is involved. Consequently, the selection rules for neutrinos may be different. In particular, if the scale of lepton number breaking is similar to the scale of horizontal symmetry breaking, neutrinos may become flavor-blind even if they carry different horizontal charges. This provides an attractive mechanism for neutrino flavor anarchy.  相似文献   

11.
Any value for the lifetime of neutrinos decaying into invisible modes (another neutrino and a Goldstone boson) is possible in theories in which the lepton number is a spontaneously broken global symmetry with different charges for every family. There are two types of models. Only in one of them neutrinos could, in a natural way, be relevant for cosmology.  相似文献   

12.
Some of the basic problems in neutrino physics, such as new energy scales, the enormous gap between the neutrino masses and the lightest charged fermion mass, and the possible existence of sterile neutrinos in the eV mass range are studied in the local gauge group SU L (4)×U(1) for electroweak unification, which does not contain fermions with exotic electric charges. It is shown that the neutrino mass spectrum can be decoupled from that of the other fermions. The further normal seesaw mechanism for neutrinos, with right-handed neutrino Majorana masses of order MM weak as well a new eV-scale can be accommodated. The eV-scale seesaw may manifest itself in experiments like the Liquid Scintillation Neutrino Detector (LSND) and MiniBooNE (MB) experimental results and future neutrino experiments.  相似文献   

13.
We demonstrate that radiative breaking of conformal symmetry (and simultaneously electroweak symmetry) in the standard model with right-chiral neutrinos and a minimally enlarged scalar sector induces spontaneous breaking of lepton number symmetry, which naturally gives rise to an axion-like particle with some unusual features. The couplings of this ‘axion’ to standard model particles, in particular photons and gluons, are entirely determined (and computable) via the conformal anomaly, and their smallness turns out to be directly related to the smallness of the masses of the light neutrinos.  相似文献   

14.
Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the Universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale cosmic microwave background observations from ACBAR, BICEP, and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m{s} and effective number N{s} of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, if m{s} is in the sub-eV range.  相似文献   

15.
《Nuclear Physics B》1988,302(4):697-738
Radiative decay of massive unstable neutrinos is examined in detail. Constraints on their mass and lifetime are established by solving the networks of nucleosynthesis and calculating the spectra of high-energy photons produced by massive neutrino decay. It is found that primordial nucleosynthesis sets stringent constraints on the mass and the lifetime of massive unstable neutrinos. According to these constraints together with constraints derived from other cosmological consideration and laboratory experiments, radiative decay of massive τ neutrinos is not allowed except for the case that the mass and the lifetime of the τ neutrino satisfy rather strict constraints; 30 MeV ≲ mντ ≲ 70 MeV, 102 s ≲ τντ ≲ 104 s. Constraints on neutrinos in the 4th generation are also derived.  相似文献   

16.
A new set of supersymmetric benchmark scenarios has recently been proposed in the context of the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking masses, taking into account the constraints from LEP, and . These points have previously been used to discuss the physics reaches of different accelerators. In this paper, we discuss the prospects for discovering supersymmetric dark matter in these scenarios. We consider direct detection through spin-independent and spin-dependent nuclear scattering, as well as indirect detection through relic annihilations to neutrinos, photons, and positrons. We find that several of the benchmark scenarios offer good prospects for direct detection via spin-independent nuclear scattering and indirect detection via muons produced by neutrinos from relic annihilations inside the Sun, and some models offer good prospects for detecting photons from relic annihilations in the galactic centre. Received: 17 October 2001 / Revised version: 14 January 2002 / Published online: 12 April 2002  相似文献   

17.
We treat high-energy neutrino production in gamma ray bursts (GRBs). Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of greater, similar 10 TeV neutrinos from GRBs with Doppler factors > or approximately 200, inferred from gamma-ray observations, would support the supranova model. Detection of < or approximately 10 TeV neutrinos is possible for neutrinos formed from nuclear production. Only the most powerful bursts at fluence levels > or approximately 3 x 10(-4) erg cm(-2) offer a realistic prospect for detection of nu(mu).  相似文献   

18.
In this work, we use the maximum entropy principle (MEP) to infer the mass of an axion which interacts to photons and neutrinos in an effective low energy theory. The Shannon entropy function to be maximized is defined in terms of the axion branching ratios. We show that MEP strongly constrains the axion mass taking into account the current experimental bounds on the neutrinos masses. Assuming that the axion is massive enough to decay into all the three neutrinos and that MEP fixes all the free parameters of the model, the inferred axion mass is in the interval 0.1 eV < m A < 0.2 eV, which can be tested by forthcoming experiments such as IAXO. However, even in the case where MEP fixes just the axion mass and no other parameter, we found that 0.1 eV < m A < 6.3 eV in the DFSZ model with right-handed neutrinos. Moreover, a light axion, allowed to decay to photons and the lightest neutrino only, is determined by MEP as a viable dark matter candidate.  相似文献   

19.
《Physics letters. [Part B]》1987,198(1):113-118
We consider the possible decay of massive reactor neutrinos into a light neutrino and either photons or electron-positron pairs. In a detector placed at the power reactor in Gösgen, Switzerland, the difference of the counting rates for reactor on minus reactor off is consistent with zero. From the experimental bounds we deduce lifetime limits for dominantly coupled light neutrinos as well as restrictions on the mixing parameter |UeH|2 for heavy, subdominantly coupled neutrinos.  相似文献   

20.
The gravitational collapse of a nonrotating, black-hole-forming massive star is studied by nu-radiation-hydrodynamical simulations for two different sets of realistic equation of state of dense matter. We show that the event will produce as many neutrinos as the ordinary supernova, but with distinctive characteristics in luminosities and spectra that will be an unmistakable indication of black hole formation. More importantly, the neutrino signals are quite sensitive to the difference of equation of state and can be used as a useful probe into the properties of dense matter. The event will be unique in that they will be shining only by neutrinos (and, possibly, gravitational waves) but not by photons, and hence they should be an important target of neutrino astronomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号