首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vijay H Arakeri 《Pramana》1993,41(3):L291-L294
Influence of various gases on the intensity of single bubble sonoluminescence has been studied. The gases used were air, oxygen, nitrogen, argon and helium. Among these oxygen gave the brightest intensity with nitrogen giving the least.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(6):2037-2043
The decreasing effect of sonoluminescence (SL) in water at high acoustic powers was investigated in relation to bubble dynamics and acoustic emission spectra. The intensity of SL was measured in the power range of 1–18 W at 83.8 kHz for open-end (free liquid surface and film-covered surface) and fixed-end boundaries of sound fields. The power dependence of the SL intensity showed a maximum and then decrease to zero for all the boundaries. Similar results were obtained for sonochemiluminescence in luminol solution. The power dependence of the SL intensity was strongly correlated with the bubble dynamics captured by high-speed photography at 64 k fps. In the low-power range where the SL intensity increases, bubble streamers were observed and the population of streaming bubbles increased with the power. At powers after SL maximum occurred, bubble clusters came into existence. Upon complete SL reduction, only bubble clusters were observed. The subharmonic in the acoustic emission spectra increased markedly in the region where bubble clusters were observed. Nonspherical oscillations of clustering bubbles may make a major contribution to the subharmonic.  相似文献   

3.
Vijay H Arakeri 《Pramana》1993,40(2):L145-L147
It has been recently demonstrated that a single gas bubble in a liquid medium can be driven hard enough by an acoustic pressure field to make it emit light which is visible to the naked eye in a dark room. This phenomenon termed as single bubble sonoluminescence has shown some extraordinary physical properties. In the present investigation we have shown that dissolved air content has a significant influence on this phenomenon.  相似文献   

4.
In our previous paper, we derived a new single bubble model including the effect of bulk viscosity. To confront it to experiments, single bubble dynamics was measured here in 30% (v/v) glycerol-water mixture under different acoustic amplitudes and compared to models including or not the effect of bulk viscosity. The results showed that calculated bubble dynamics were not significantly affected by the bulk viscosity within the experimental conditions used in this study. However, there was a noticeable delay for the first rebound when bulk viscosity was considered. The corresponding sonoluminescence intensities were collected and compared with theoretical predictions. The results did not allow to discriminate between the two models (one includes the effect of bulk viscosity, the other does not), confirming the negligible effect of bulk viscosity in this condition (30% (v/v) glycerol-water mixture). Due to the instability of a single bubble in higher viscosity solutions, we could not implement experiments that can discriminate between the two models.  相似文献   

5.
6.
7.
The influence on luminescence from conical bubble collapse (CBL) with varying Ar gas content while perturbing the liquid 1,2-Propanediol (PD) has been investigated. The temporal, spatial, and spectral features were analysed with regards to the dynamics of collapse and liquid degradation. Sulphuric acid and sodium chloride were added to disturb the liquid. The following three cases were studied: PD/Ar, (I), (PD + H2SO4)/Ar, (II), and (PD + H2SO4 + NaCl)/Ar, (III). The intensities of those cases decrease as III > II > I. Temporally, single and multiple light emissions were found to occur. The pulse shape exhibited a large variety of profiles with a main maximum and up to two local maxima around the main maximum. These local maxima resembled those generated by laser cavitation. Spatially, no radial symmetry was detected in the light emissions. Spectrally, the Swan, CH and CN lines were observed at low volumes of gas and driving pressure. The OH radical and OH-Ar bands, as well as the Na and K lines, consistently appeared superimposed on an underlying continuum that almost disappeared in (III). The Na line was observed with two satellite diffuse bands representing Na-Ar complexes in (I) and (II), whereas in (III), only the line of sodium could be seen. Weak and diffuse emission lines from the Ar atom in the near-IR region were observed in (I) and (II).The proposed mechanism of bright CBL was based on the energy transfer from electron-excited homolytic cleavage products to the chromophore molecules generated during the collapse-rebound time line (∼8200 K and ∼1 ms of collapse time from model), which had accumulated inside the liquid and remained on the walls of cavity during the repetition of the collapse. A general mechanism for the bright CBL is broached.  相似文献   

8.
The dynamics of a bubble near a corner formed by two flat rigid boundaries (walls), is studied experimentally using a spark-generated bubble. The expansion, collapse, rebound, re-collapse and migration of the bubble, along with jetting and protrusion, are captured using a high-speed camera. Our experimental observations reveal the behaviour of the bubble in terms of the corner angle and the dimensionless standoff distances to the near and far walls in terms of the maximum bubble radius. The bubble remains approximately spherical during expansion except for its surface becoming flattened when in close proximity to a wall. When a bubble is initiated at the bisector of the two walls, the bubble becomes oblate along the bisector during the late stages of collapse. A jet forms towards the end of collapse, pointing to the corner. The closer the bubble to the two walls, the more oblate along the bisector the bubble becomes, and the wider the jet. A bubble initiated near one of the two walls is mainly influenced by the nearer wall. The jet formed is pointing to the near wall but inclined towards the corner. After the jet penetrates through the bubble surface, the bubble becomes a bubble ring, and a bubble protrusion forms following the jet. The bubble ring collapses and subsequently disappears, while the protrusion firstly expands, and then collapses and migrates to the corner.  相似文献   

9.
Based on a quasi-adiabatic model,the parameters of the bubble interior for a moving single bubble sonoluminescence (m-SBSL) in water are calculated.By using a complete form of the hydrodynamic force,a unique circular path for the m-SBSL in water is obtained.The effect of the ambient pressure variation on the bubble trajectory is also investigated.It is concluded that as the ambient pressure increases,the bubble moves along a circular path with a larger radius and all bubble parameters,such as gas pressure,interior temperature and light intensity,increase.A comparison is made between the parameters of the moving bubble in water and those in N-methylformamide.With fluid viscosity increasing,the circular path changes into an elliptic form and the light intensity increases.  相似文献   

10.
Acoustic cavitation is a very important hydrodynamic phenomenon, and is often implicated in a myriad of industrial, medical, and daily living applications. In these applications, the effect mechanism of liquid surface tension on improving the efficiency of acoustic cavitation is a crucial concern for researchers. In this study, the effects of liquid surface tension on the dynamics of an ultrasonic driven bubble near a rigid wall, which could be the main mechanism of efficiency improvement in the applications of acoustic cavitation, were investigated at the microscale level. A synchronous high-speed microscopic imaging method was used to clearly record the temporary evolution of single acoustic cavitation bubble in the liquids with different surface tension. Meanwhile, the bubble dynamic characteristics, such as the position and time of bubble collapse, the size and stability of the bubbles, the speed of bubble boundaries and the micro-jets, were analyzed and compared. In the case of the single bubbles near a rigid wall, it was found that low surface tension reduces the stability of the bubbles in the liquid medium. Meanwhile, the bubbles collapse earlier and farther from the rigid wall in the liquids with lower surface tension. In addition, the surface tension has no significant influence on the speed of the first micro-jet, but it can substantially increase the speed of second and the third micro-jets after the first collapse of the bubble. These effects of liquid surface tension on the bubble dynamics can explain the mechanism of surfactants in numerous fields of acoustic cavitation for facilitating its optimization and application.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(6):2044-2051
The sonoluminescence spectra from acoustic cavitation in aqueous NaCl solutions are systematically studied in a large range of ultrasonic frequencies under variation of electrical power and argon sparging. At the same time, bubble dynamics are analysed by high-speed imaging. Sodium line and continuum emission are evaluated for acoustic driving at 34.5, 90, 150, 365, and 945 kHz in the same reactor vessel. The results show that the ratio of sodium line to continuum emission can be shifted by the experimental parameters: an increase in the argon flow increases the ratio, while an increase in power leads to a decrease. At 945 kHz, the sodium line is drastically reduced, while the continuum stays at elevated level. Bubble observations reveal a remarkable effect of argon in terms of bubble distribution and stability: larger bubbles of non-spherical shapes form and eject small daughter bubbles which in turn populate the whole liquid. As a consequence, the bubble interactions (splitting, merging) appear enhanced which supports a link between non-spherical bubble dynamics and sodium line emission.  相似文献   

12.
Sonoluminescence (SL) is an interesting physical effect which can convert acoustic energy into light pulses. Up to now, the microscopic mechanism of the SL has not yet been fully clear. It is known that hydroxyl radicals play the important role for SL from water. In this work, we take advantage of carbon nano-dots (CNDs) as free radical captors to modulate the hydroxyl radicals (OH) in SL effect. Through studying the single bubble SL (SBSL) from CND aqueous solution (CNDAS) with trace amount of CNDs, we find that the color of SBSL is tuned dramatically from blue in water to green in CNDAS. Two different SL mechanisms can be identified from emission spectrum. One comes from blackbody-like radiation and another is attributed from the characteristic emission with identified peaks. The decrease in the yield of H2O2 in the presence of CNDs suggests the modulation effect on SL via OH interacting with CNDs. By comparison of the CNDs before and after sonication, it is found that hydroxyl radicals generated during SL can take part in the chain-like oxidation of the chemical groups attached to the CNDs to form larger amount of carboxyl groups. The blackbody temperature of blackbody-like radiation decreases from 15,600 K in water to 11,300 K in CNDAS. Moreover, the emission from hydroxyl radicals and two new luminescent centers related to carboxyl groups are introduced in SL from CNDAS. These important and interesting findings indicate that by adding trace amount of CNDs in water, the effect of SBSL can be significantly modulated, which can provide a macroscopic phenomenon for gaining an insight into the microscopic mechanism of the SL effect.  相似文献   

13.
The oscillation characteristics of a single bubble and its induced radiation pressure and the dissipated power are essential for a wide range of applications. For bubble oscillations with high Mach number, the influence of the liquid compressibility is significantly strong and should be fully considered. In the present paper, the bubble wall motion equation with the second-order Mach number is employed for investigating a free oscillating bubble in the liquid with numerical and experimental verifications. For the purpose of comparisons, the revised Keller-Miksis equation up to the first-order Mach number is solved with the same conditions (e.g. the initial conditions and the ambient pressure). Through our simulations, comparing with the predictions by the first-order equation, we find that: (1) The bubble radius, the bubble wall radial velocity and the bubble wall radial acceleration predicted by the second-order equation with high Mach number are significantly different respectively, and the dimensionless differences increase with the increase of the Mach number. (2) The valid prediction range of the second-order equation is much larger. (3) The dissipated power predicted by the second-order equation with high Mach number is smaller.  相似文献   

14.
This paper mainly focuses on the nonlinear pulsation of a bubble near the rigid wall. Dynamics of near-wall bubble and free bubble are discussed and compared in details. Investigation reveals as the driving acoustic pressure amplitude increases, nonlinear pulsation of bubble becomes intense gradually. Besides, decreasing the viscosity of host liquid is advantageous for the nonlinear pulsation of bubble. Bifurcation diagrams of bubble radius show acoustic reflection of the rigid wall makes the initial bifurcation appear at low driving acoustic amplitude and on bubble with small ambient radius, and makes the bifurcation still exist for bubble in high-viscosity liquids. That indicates the rigid wall will produce enhancement on the nonlinearity of nearby bubble. As the bubble approaches the wall, the enhancement becomes strong. Moreover, research on the influence of driving frequency shows the rigid wall makes the frequency band corresponding to chaos around the resonant frequency of free bubble shift downward.  相似文献   

15.
Bubble behaviors near a boundary in an ultrasonic field are the fundamental forms of acoustic cavitation and of substantial importance in various applications, such as industry cleaning, chemical engineering and food processing. The effects of two important factors that strongly affect the dynamics of a single acoustic cavitation bubble, namely, the initial bubble radius and the standoff distance, were investigated in this work. The temporal evolution of the bubble was recorded using high speed microphotography. Meanwhile, the time of bubble collapse and the characteristics of the liquid jets were analyzed. The results demonstrate that the intensity of the acoustic cavitation, which is characterized by the time of bubble collapse and the liquid jet speed, reaches the optimum level under suitable values of the initial bubble radius and the normalized standoff distance. As the initial bubble radius and the normalized standoff distance increase or decrease from the optimal values, the time of the bubble collapse increases, and the first liquid jet’s speed decreases substantially, whereas the speeds of the second and third liquid jets exhibit no substantial changes. These results on bubble dynamics in an ultrasonic field are important for identifying or correcting the mechanisms of acoustic cavitation and for facilitating its optimization and application.  相似文献   

16.
17.
The detailed link of liquid phase sonochemical reactions and bubble dynamics is still not sufficiently known. To further clarify this issue, we image sonoluminescence and bubble oscillations, translations, and shapes in an acoustic cavitation setup at 23 kHz in sulfuric acid with dissolved sodium sulfate and xenon gas saturation. The colour of sonoluminescence varies in a way that emissions from excited non-volatile sodium atoms are prominently observed far from the acoustic horn emitter (“red region”), while such emissions are nearly absent close to the horn tip (“blue region”). High-speed images reveal the dynamics of distinct bubble populations that can partly be linked to the different emission regions. In particular, we see smaller strongly collapsing spherical bubbles within the blue region, while larger bubbles with a liquid jet during collapse dominate the red region. The jetting is induced by the fast bubble translation, which is a consequence of acoustic (Bjerknes) forces in the ultrasonic field. Numerical simulations with a spherical single bubble model reproduce quantitatively the volume oscillations and fast translation of the sodium emitting bubbles. Additionally, their intermittent stopping is explained by multistability in a hysteretic parameter range. The findings confirm the assumption that bubble deformations are responsible for pronounced sodium sonoluminescence. Notably the observed translation induced jetting appears to serve as efficient mixing mechanism of liquid into the heated gas phase of collapsing bubbles, thus potentially promoting liquid phase sonochemistry in general.  相似文献   

18.
This paper tries to discern the mechanistic features of sonochemical degradation of recalcitrant organic pollutants using five model compounds, viz. phenol (Ph), chlorobenzene (CB), nitrobenzene (NB), p-nitrophenol (PNP) and 2,4-dichlorophenol (2,4-DCP). The sonochemical degradation of the pollutant can occur in three distinct pathways: hydroxylation by OH radicals produced from cavitation bubbles (either in the bubble–bulk interfacial region or in the bulk liquid medium), thermal decomposition in cavitation bubble and thermal decomposition at the bubble–liquid interfacial region. With the methodology of coupling experiments under different conditions (which alter the nature of the cavitation phenomena in the bulk liquid medium) with the simulations of radial motion of cavitation bubbles, we have tried to discern the relative contribution of each of the above pathway to overall degradation of the pollutant. Moreover, we have also tried to correlate the predominant degradation mechanism to the physico-chemical properties of the pollutant. The contribution of secondary factors such as probability of radical–pollutant interaction and extent of radical scavenging (or conservation) in the medium has also been identified. Simultaneous analysis of the trends in degradation with different experimental techniques and simulation results reveals interesting mechanistic features of sonochemical degradation of the model pollutants. The physical properties that determine the predominant degradation pathway are vapor pressure, solubility and hydrophobicity. Degradation of Ph occurs mainly by hydroxylation in bulk medium; degradation of CB occurs via thermal decomposition inside the bubble, degradation of PNP occurs via pyrolytic decomposition at bubble interface, while hydroxylation at bubble interface contributes to degradation of NB and 2,4-DCP.  相似文献   

19.
Sonoluminescence (SL) radiation from different solutions of phosphoric acid has been studied in the framework of a hydro-chemical simulation. By calculating the phase diagrams of an SL bubble in different concentrations of phosphoric acid, the optimum solution for acquiring maximum SL emission has been specified as the solution of around 30 wt.% acid. It is shown that the SL temperature and the number of particles inside the bubble at the time of SL emission are two important factors determining the optimum solution. Numerical calculation of the SL intensity shows that the optimum solution has an intensity of about 20 times greater than that of water. Also, contributions of different energy sources in creation of thermal energy of the bubble have been calculated. The result indicates that the work of external driving pressure is the most important factor to determine the ultimate thermal energy of the bubble at the time of SL emission. Based on this result, we have reasoned out that in the determination of the optimum solution, the role of viscosity of the acid solutions is more important than the vapor pressure.  相似文献   

20.
The bubbles have been widely used in biomedical field, military and chemical industry. The liquid jet generated by the bubble collapse through an orifice is utilized in needle-free injections and inkjet printing. In this paper we devised synchronized triggering equipment, experimentally investigated the mechanism in the interaction of an electric-spark generated a single bubble and a vertical wall with an air-back opening. Detailed observations were recorded and described for bubble oscillation, migration, jetting, as well as the high-speed water spike penetrating through the opening. The results revealed that there was a critical value of the bubble-wall distance, below which the bubble was directed away from the incomplete boundary, while the bubble may tear from the middle for larger distance. As the distance varied, we studied the volume of the water that rushed through the opening, the velocity at the tip of the water spike, and the center of the bubble as well as the migration of the bubble boundary. This work reveals that the high-speed water spike caused by the bubble may be a potential threat to the structures, specifically for cases with a small opening size and short bubble-boundary distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号