首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cold antihydrogen is produced when antiprotons are repeatedly driven into collisions with cold positrons within a nested Penning trap. Efficient antihydrogen production takes place during many cycles of positron cooling of antiprotons. A first measurement of a distribution of antihydrogen states is made using a preionizing electric field between separated production and detection regions. Surviving antihydrogen is stripped in an ionization well that captures and stores the freed antiproton for background-free detection.  相似文献   

2.
Aspects of the possible reactions of trapped antiprotons with excited state positronium atoms to form antihydrogen are discussed. Conditions are identified whereby the antihydrogen produced may be suitable for capture in a neutral trap. A discussion is given of possible use of antihydrogen to test the quantization of electric charge involving precision comparisons of hydrogen and antihydrogen (Rydberg constants), and proton and antiproton cyclotron frequencies.  相似文献   

3.
A background-free observation of cold antihydrogen atoms is made using field ionization followed by antiproton storage, a detection method that provides the first experimental information about antihydrogen atomic states. More antihydrogen atoms can be field ionized in an hour than all the antimatter atoms that have been previously reported, and the production rate per incident high energy antiproton is higher than ever observed. The high rate and the high Rydberg states suggest that the antihydrogen is formed via three-body recombination.  相似文献   

4.
The ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. For this purpose, an efficient extraction of a spin polarized antihydrogen beam is essential. In 2010, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. The CUSP trap confines antiprotons and positrons simultaneously with its axially symmetric magnetic field to form antihydrogen atoms. It is expected that antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are defocused, resulting in the formation of a spin-polarized antihydrogen beam.  相似文献   

5.
Cold antihydrogen atoms have been produced recently by mixing trapped antiprotons with cold positrons. The efficiency is remarkable: more than 10% of the antiprotons form antihydrogen. Future spectroscopy of antihydrogen has the potential to provide new extremely precise tests of the fundamental symmetry between matter and antimatter. In addition, cold antihydrogen atoms might permit the first direct experiments investigating antimatter gravity. A novel method to measure the gravitational acceleration of antimatter using ultra-cold antihydrogen atoms is proposed. PACS 04.80.Cc; 32.80.Pj; 36.10.-k  相似文献   

6.
We present a theoretical study of the motion of antihydrogen atoms in the Earth??s gravitational field near a material surface. We predict the existence of long-living quasistationary states of antihydrogen in a superposition of the gravitational and Casimir-van der Waals potentials of the surface. We suggest an interferometric method of measuring the energy difference between such gravitational states, hence the gravitational mass of antihydrogen.  相似文献   

7.
The problem of possible controlling the antihydrogen formation and deexcitation has become an actual one for the investigation of efficient methodologies for the production of cold antihydrogen in the ground state. In 1983–1997 it was suggested and discussed by A. Wolf the possibility of laser-stimulated formation and stabilization of antihydrogen in collisions of antiprotons with positrons. In the present report we analyze the question with a wave-packet propagation method developed for the quantum two-body problem with a non-separable interaction. This computational technique can also be applied for analyzing the laser-assisted antihydrogen formation in magnetic traps.  相似文献   

8.
The AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is an international collaboration, based at CERN, with the experimental goal of performing the first direct measurement of the Earth’s gravitational acceleration on antihydrogen. In the first phase of the experiment, a gravity measurement with 1% precision will be performed by passing a beam of ultra cold antihydrogen atoms through a classical Moiré deflectometer coupled to a position sensitive detector. The key requirements for this measurement are the production of ultra cold (T~100?mK) Rydberg state antihydrogen and the subsequent Stark acceleration of these atoms. The aim is to produce Rydberg state antihydrogen by means of the charge exchange reaction between ultra cold antiprotons (T~100?mK) and Rydberg state positronium. This paper will present details of the developments necessary for the successful production of the ultra cold antihydrogen beam, with emphasis on the detector that is required for the development of these techniques. Issues covered will include the detection of antihydrogen production and temperature, as well as detection of the effects of Stark acceleration.  相似文献   

9.
Magnetic traps offer the possibility for long-term storage and accumulation of atomic antihydrogen. These are invaluable features for revealing subtle differences that may exist between hydrogen and antihydrogen in interaction with electromagnetic or gravity fields. An overview is given of various aspects associated with trapping and cooling of neutral particles, putting emphasis on their relevance for the antihydrogen problem.  相似文献   

10.
This paper is a summary of a talk presented at the Antihydrogen Workshop in Munich, July 1992. We discuss the possibilities of laser cooling antihydrogen and the compatibility of laser cooling with the experimental environment needed for the production and trapping of antihydrogen. Most envisioned experiments will require or be enhanced by the production of very cold antihydrogen.  相似文献   

11.
Possibilities for trapping and cooling antihydrogen atoms for spectroscopy and gravitational measurements are discussed. A measurement of the gravitational force on antihydrogen seems feasible if antihydrogen can be cooled to of order 1 milli-Kelvin. Difficulties in obtaining this low energy are discussed in the hope of stimulating required experimental and theoretical studies.  相似文献   

12.
Antihydrogen is formed when antiprotons are mixed with cold positrons in a nested Penning trap. We present experimental evidence, obtained using our antihydrogen annihilation detector, that the spatial distribution of the emerging antihydrogen atoms is independent of the positron temperature and axially enhanced. This indicates that antihydrogen is formed before the antiprotons are in thermal equilibrium with the positron plasma. This result has important implications for the trapping and spectroscopy of antihydrogen.  相似文献   

13.
We study a method to induce resonant transitions between antihydrogen ( \(\bar {H}\) ) quantum states above a material surface in the gravitational field of the Earth. The method consists in applying a gradient of magnetic field which is temporally oscillating with the frequency equal to a frequency of a transition between gravitational states of antihydrogen. Corresponding resonant change in a spatial density of antihydrogen atoms can be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how a value of the gravitational mass of the \(\bar {H}\) atom can be deduced from such a measurement.  相似文献   

14.
In order to test CPT symmetry between antihydrogen and its counterpart hydrogen, the ASACUSA collaboration plans to perform high precision microwave spectroscopy of ground-state hyperfine splitting of antihydrogen atom in-flight. We have developed an apparatus (“cusp trap”) which consists of a superconducting anti-Helmholtz coil and multiple ring electrodes. For the preparation of slow antiprotons and positrons, Penning-Malmberg type traps were utilized. The spectrometer line was positioned downstream of the cusp trap. At the end of the beamline, an antihydrogen beam detector was located, which comprises an inorganic Bismuth Germanium Oxide (BGO) single-crystal scintillator housed in a vacuum duct and surrounding plastic scintillators. A significant fraction of antihydrogen atoms flowing out the cusp trap were detected.  相似文献   

15.
《Physics letters. [Part B]》2004,578(1-2):23-32
We show that antihydrogen production is the dominant process when mixing antiprotons and positrons in the ATHENA apparatus, and that the initial production rate exceeds 300 Hz, decaying to 30 Hz within 10 s. A fraction of 65% of all observed annihilations is due to antihydrogen.  相似文献   

16.
The gravitational force acting on antiparticles has never been directly measured to date. A method for measuring the gravitational effects on antihydrogen by equilibrating the gravitational force with a magnetic gradient is discussed. The systematic and statistical errors inherent to the measurement will be presented. It will be shown that a measurement of gravity at 1% can be realised using ∼ 5 × 105 antihydrogen atoms. The production of antihydrogen atoms in conditions suitable for the measurement is also discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The development of a high density cryogenic pure positron plasma trap at the LLNL positron beam facility opens new possibilities for antihydrogen research. We discuss a planned measurement of the three-body collisional recombination rate in magnetized plasmas, a possible antihydrogen atomic beam experiment, and other applications of pure positron plasmas.  相似文献   

18.
Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss nondestructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Measurement and control of plasma temperature variations, and the application to antihydrogen production experiments are discussed.  相似文献   

19.
The aim of the ASACUSA-CUSP experiment at CERN is to produce a cold, polarised antihydrogen beam and perform a high precision measurement of the ground-state hyperfine transition frequency of the antihydrogen atom and compare it with that of the hydrogen atom using the same spectroscopic beam line. Towards this goal a significant step was successfully accomplished: synthesised antihydrogen atoms have been produced in a CUSP magnetic configuration and detected at the end of our spectrometer beam line in 2012 [1]. During a long shut down at CERN the ASACUSA-CUSP experiment had been renewed by introducing a new double-CUSP magnetic configuration and a new semi-cylindrical tracking detector (AMT) [2], and by improving the transport feature of low energy antiproton beams. The new tracking detector monitors the antihydrogen synthesis during the mixing cycle of antiprotons and positrons. In this work the latest results and improvements of the antihydrogen synthesis will be presented including highlights from the last beam time.  相似文献   

20.
The performance of proposed antihydrogen spectroscopy or gravity experiments will crucially depend on the temperature of the initial antihydrogen sample. Measurements by ATRAP and ATHENA have shown that antihydrogen produced with the nested-trap technique is much hotter than the temperature of the surrounding trap. Therefore, novel schemes for antihydrogen recombination as well as for the pre-cooling of antiprotons are being considered. We are investigating a possible antiproton cooling technique based on the laser cooling of negative osmium ions. If demonstrated to be successful, it will allow the sympathetic cooling of antiprotons—or any negatively charged particles—to microkelvin temperatures. As a first milestone toward the laser cooling of negative ions, we have performed collinear laser spectroscopy on negative osmium and determined the transition frequency and the cross-section of the relevant bound–bound electric-dipole transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号