首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The productivity of monolithic capillary columns based on silica gel and polymers of different polarities (divinylbenzene and ethyleneglycol dimethacrylate) is investigated using a model mixture of light hydrocarbons. It is shown that the productivity of a column is noticeably affected by the type of gas carrier. The highest productivity is observed when using carbon dioxide or dinitrogen monoxide as the gas carrier. The lowest productivity is observed when uisng hydrogen or helium.  相似文献   

2.
Methacrylate monolithic stationary phases were produced in fused-silica chips by UV initiation. Poly(butyl methacrylate-co-ethylene dimethacrylate) (BMA) and poly(lauryl methacrylate-co-ethylene dimethacrylate) (LMA) monoliths containing 30, 35 and 40% monomers were evaluated for the separation of peptides under gradient conditions. The peak capacity was used as an objective tool for the evaluation of the separation performance. LMA monoliths of the highest density gave the highest peak capacities (≈40) in gradients of 15 min and all LMA monoliths gave higher peak capacities than the BMA monoliths with the same percentage of monomers. Increasing the gradient duration to 30 min did not increase the peak capacity significantly. However, running fast (5 min) gradients provides moderate peak capacities (≈20) in a short time. Due to the system dead volume of 1 μL and the low bed volume of the chip, early eluting peptides migrated over a significant part of the column during the dwell time under isocratic conditions. It was shown that this could explain an increased band broadening on the monolithic stationary phase materials used. The effect is stronger with BMA monoliths, which partly explains the inferior performance of this material with respect to peak capacity. The configuration of the connections on the chip appeared to be critical when fast analyses were performed at pressures above 20 bar.  相似文献   

3.
Four methacrylate ester‐based monolithic columns for capillary liquid chromatography (CLC) were prepared by radical polymerization with ammonium peroxodisulfate (3 columns) and by thermal initiation (1 column). The polymerization mixture consisted of butyl methacrylate (BMA) and ethylene glycol dimethacrylate (EDMA), propan‐1‐ol, butane‐1,4‐diol, water, and ammonium peroxodisulfate as initiator. It was necessary to add N,N,N′,N ′‐tetramethylethylenediamine (TEMED) to the polymerization mixture to activate the reaction. The amount of initiator and activator was optimized to attain quantitative polymerization. The reproducibility of three columns prepared at ambient temperature was studied. The most efficient column with HETP of 29 μm for uracil was compared to the monolithic column prepared by thermal initiation with α,α′‐azobisisobutyronitrile (AIBN). The efficiencies of all the test columns were characterized by van Deemter curves. Their total porosities were calculated from the retention time of uracil. Walters indices of hydrophobicity (HI) were calculated from the retention factors of anthracene and benzene. The columns prepared by both methods are comparable in their selectivities and efficiencies. They show the same characteristics because their total porosities and Walters indices of hydrophobicity are consistent. However, the preparation of monoliths using ammonium peroxodisulfate was less demanding, because polymerization was possible at ambient temperature.  相似文献   

4.
A systematic study is reported on the performance of long monolithic capillary columns in gradient mode. Using a commercial nano-LC system, reversed-phase peptide separations obtained through UV-detection were conducted. The chromatographic performance, in terms of conditional peak capacity and peak productivity, was investigated for different gradient times (varying between 90 and 1320min) and different column lengths (0.25, 1, 2 and 4m) all originating from a single 4m long column. Peak capacities reaching values up to n=10(3) were measured in case of the 4m long column demonstrating the high potential of these long monoliths for the analysis of complex biological mixtures, amongst others. In addition, it was found that the different column fragments displayed similar flow resistance as well as consistent chromatographic performance in accordance with chromatographic theory indicating that the chromatographic bed of the original 4m long column possessed a structural homogeneity over its entire length.  相似文献   

5.
Monolithic capillary columns (320 microm I.D.) were prepared for capillary liquid chromatography (CLC) by radical polymerization of butylmethacrylate (BMA) and ethylenedimethacrylate (EDMA) in the presence of a porogen solvent containing propan-1-ol, butane-1,4-diol and water. The influence of the contents of the porogen solvent and EDMA in the polymerization mixture on the monolith porosity and column efficiency was investigated. The composition of the polymerization mixture was optimized to attain a minimum HETP of the order of tens of microm for test compounds with various polarities. The separation performance and selectivity of the most efficient monolithic column prepared was characterized by van Deemter curves, peak asymmetry factors and Walters hydrophobicity and silanol indices. It was demonstrated that the 320-microm I.D. monolithic column exhibited CLC separation performance similar to that observed for 100- and 150-microm I.D. monolithic columns reported in the literature; moreover, the 320-microm I.D. column was easier to operate in CLC and exhibited a higher sample loadability.  相似文献   

6.
Preparation of organic polymer monolithic columns in fused silica capillaries was aimed at fast gradient separation of proteins. For this purpose, polymerization in situ procedure was optimized, using ethylene dimetacrylate and butyl metacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in presence of non-aqueous porogen solvent mixtures composed of 1-propanol and 1,4-butanediol. The separation of proteins in totally monolithic capillary columns was compared with the chromatography on a new type of "hybrid interparticle monolithic" capillary columns, prepared by in situ polymerization in capillary packed with superficially porous spherical beds, 37-50 microm. The "hybrid" columns showed excellent stability and improved hydrodynamic flow properties with respect to the "totally" monolithic capillary columns. The separation selectivity is similar in the two types of columns. The nature of the superficially porous layer (bare silica or bonded C18 ligands) affects the separation selectivity less significantly than the porosity (density) of the monolithic moiety in the interparticle space, controlled by the composition of the polymerization mixture. The retention behaviour of proteins on all prepared columns is consistent with the reversed-phase gradient elution theory.  相似文献   

7.
In recent years, continuous separation media have attracted considerable attention because of the advantages they offer over packed columns. This research resulted in two useful monolithic material types, the first based on modified silica gel and the second on organic polymers. This work attempts to review advances in the development, characterization, and applications of monolithic columns based on synthetic polymers in capillary chromatography, with the main focus on monolithic beds prepared from methacrylate-ester based monomers. The polymerization conditions used in the production of polymethacrylate monolithic capillary columns are surveyed, with attention being paid to the concentrations of monomers, porogen solvents, and polymerization initiators as the system variables used to control the porous and hydrodynamic properties of the monolithic media. The simplicity of their preparation as well as the possibilities of controlling of their porous properties and surface chemistries are the main benefits of the polymer monolithic capillary columns in comparison to capillary columns packed with particulate materials. The application areas considered in this review concern mainly separations in reversed-phase chromatography, ion-exchange chromatography, hydrophobic and hydrophilic interaction modes; enzyme immobilization and sample preparation in the capillary chromatography format are also addressed.  相似文献   

8.
Capillary liquid chromatography (cLC) has great potential for protein and peptide separation, with advantages of high efficiency, high resolution, low sample consumption, and high sensitivity when coupled with mass spectrometry. In recent years, monoliths have been widely used as the stationary phases for capillary columns, owing to easy preparation, high permeability, fast mass transfer, and low backpressure. This review summarizes recent advances (2007–2012) in monolithic columns for protein and peptide separation by cLC. After a brief introduction on the preparation of monolithic capillary columns, the emphasis of this review is focused on the recent application of such columns for protein and peptide separation by cLC. Furthermore, the challenges and potential hot points of monolithic capillary columns in the future are discussed.  相似文献   

9.
The effect of the conditions of synthesis of divinylbenzene-based monolithic capillary columns on their chromatographic characteristics was studied. It was demonstrated that the porosity and permeability of the column change significantly even at small deviations from the optimum conditions of polymerization of the monolith in the column. By contrast, the minimum value of HETP proved to be only slightly sensitive to the conditions of synthesis, ranging within ~10–20 μm. The conditions of polymerization of the monolith were found to produce more pronounced effect on the slope of the right branch of the van Deemter curve (parameter C), with the flattest curve being observed for columns prepared under optimum conditions. The minimum value of HETP for polymer monolithic capillary columns was found to be similar to that for silica gel monolithic capillary columns, but the latter are characterized by C values approximately an order of magnitude lower.  相似文献   

10.
In this study, the molecular imprinting method was used to separate enantiomeric forms of chiral antidepressant drug, R,S-citalopram (R,S-CIT) in aqueous solution by CEC system combining the advantages of capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC). For that, an amino acid-based molecularly imprinted monolithic capillary column was designed and used as a stationary phase for selective separation of S-citalopram (S-CIT) for the first time. S-CIT was selectively separated from the aqueous solution containing the other enantiomeric form of R-CIT, which is the same in size and shape as the template molecule. Morphology of the molecularly imprinted (MIP S-CIT) and non-imprinted (NIP S-CIT) monolithic capillary columns was observed by scanning electron microscopy. Imprinting efficiency of MIP S-CIT monolithic capillary column used for selective S-CIT separation was verified by comparing with NIP S-CIT and calculated imprinting factor (I.F:1.81) proved the high selectivity of the MIP S-CIT for S-CIT. Cavities formed for S-CIT form enabled selective (α = 2.08) separation of the target molecule from the other enantiomeric R-CIT form. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 7.68 × 10−6 m2/Vs for R,S-CIT at pH 7.0 10 mM PB and 50% ACN ratio. The performance of both MIP S-CIT and NIP S-CIT columns was estimated by repeating the R,S-CIT separations with intra-batch and inter-batch studies for reproducibility of retention times of R,S-CITs. Estimated RSD values that are lower than 2% suggest that the monolithic columns separate R,S-CIT enantiomers without losing separation efficiency.  相似文献   

11.
Stationary phases for capillary electrochromatography with a longitudinal gradient of functionalities have been prepared via photoinitiated grafting of polymer chains onto the pore surface of a porous polymer monolith. In order to achieve the desired retention and electroosmotic flow, the hydrophobic poly(butyl methacrylate-co-ethylene dimethacrylate) monolith with optimized porous properties was grafted with a layer of ionizable polymer, poly(2-acrylamido-2-methyl-1-propanesulfonic acid). A moving shutter and a neutral density filter were used to control the dose of UV light received at different locations along the monolith in order to create the longitudinal gradient of functionalities. Formation of the desired gradients was confirmed using electron probe microanalysis of different locations along the column. The preparation technique significantly affects performance in the CEC mode as demonstrated on the separations of a model mixture using columns both with homogeneous distribution of grafts and with a gradient of functionality. Columns grafted with the gradient of functionalities were found superior to those functionalized uniformly. A comparison of the performance of the gradient column with another containing evenly distributed functionalities showed the performance benefits of the "gradient" column.  相似文献   

12.
Eeltink S  Svec F  Fréchet JM 《Electrophoresis》2006,27(21):4249-4256
Open-tubular columns for CEC separations having inner-wall coated with a thin layer of porous monolithic polymer have been studied. A two-step process including (i) UV-initiated polymerization leading to a layer of porous poly(butyl methacrylate-co-ethylene dimethacrylate), and (ii) UV-initiated grafting of ionizable monomers appear to be well suited for the preparation of these columns. The thickness of the porous polymer layer is controlled by the percentage of monomers in the polymerization mixture and/or length of the irradiation time. The layer thickness significantly affects retention, efficiency, and resolution in open-tubular CEC. Under optimized conditions, column efficiencies up to 400,000 plates/m can be achieved. Use of higher temperature and application of pressure enables a significant acceleration of the open-tubular CEC separations.  相似文献   

13.
The separation of intact proteins, including protein isoforms arising from various amino-acid modifications, employing a poly(styrene-co-divinylbenzene) monolithic capillary column in high-performance liquid chromatography coupled on-line to a time-of-flight mass spectrometer (MS) is described. Using a 250 mm × 0.2 mm monolithic capillary column high-sensitivity separations yielding peak capacities of >600 were achieved with a 2h linear gradient and formic acid added in the mobile phase as ion-pairing agent. The combination of high-resolution chromatography with high-accuracy MS allowed to distinguish protein isoforms that differ only in their oxidation and biotinylation state allowing the separation between structural isoforms. Finally, the potential to separate proteins isoforms due to glycosylation is discussed.  相似文献   

14.
A novel approach is introduced and evaluated for the preparation of silica-based monoliths by a sol–gel technique where in situ polymerization was carried out by γ-ray irradiation within the capillary. The γ-radiation-initiated synthesis generated radicals directly on the monomer, thereby avoiding use of any initiator. The chromatographic behavior of the capillary monolithic columns was studied in the modes of CEC, p-CEC and low pressure-driven separation, all of which exhibited reversed-phase character. Various operational parameters, such as column temperature, separation voltage, acetonitrile content and buffer pH, were varied to assess their influence on column performance in the separation of a series of neutral compounds including thiourea, benzene, toluene, ethyl benzene, biphenyl and naphthalene. A scanning electron micrograph of a cross-section of the capillary column showed that the gel took the form of a spherical particle aggregate and adhered to the column inner wall. It provided a viable alternative to either thermally initiated or photo polymerization for the preparation of monolithic columns.  相似文献   

15.
Summary A newly developed polysiloxane-type packing material shows promise for use in SFC. Relatively polar compounds were eluted from a microbore column with good peakshape using a mobile phase consisting of CO2 modified with formic acid and water. The latter combination is an effective modifier suitable for use with pressure programming and FID detection.
Vergleich von gepackten und Capillar-Säulen für praktische SFC-Trennungen
  相似文献   

16.
Butyl-methacrylate-based porous monoliths were prepared inside fused-silica capillaries as reversed-phase separation media for liquid chromatography (LC) and capillary electrochromatography (CEC). During our previous research on methacrylate-based monoliths for reversed-phase separations, we noticed that a separation efficiency of up to 300,000 plates/m can easily be obtained in the CEC mode for unretained compounds. However, the efficiencies for retained compounds were much lower in reversed-phase systems, especially in pressure-driven LC. In this work methacrylate-based columns were prepared and characterized in terms of efficiency and retention in reversed-phase (pressure-driven) LC and in CEC. Much attention has been paid to the mass-transfer mechanism in the stationary phase. Factors that affect the plate heights for specific compounds have been investigated. A possible explanation for the relatively low separation efficiency of retained compounds and suggestions to improve molecular mass transfer are provided.  相似文献   

17.
A series of ionic liquids (ILs) monolithic capillary columns based on 1-vinyl-3-octylimidazolium (ViOcIm+) were prepared by two approaches (“one-pot” approach and “anion-exchange” approach). The effects of different anions (bromide, Br; tetrafluoroborate, BF4; hexafluorophosphate, PF6; and bis-trifluoromethanesulfonylimide, NTf2) on chromatography performance of all the resulting columns were investigated systematically under capillary electrochromatography (CEC) mode. The results indicated that all these columns could generate a stable reversed electroosmotic flow (EOF) over a wide pH range from 2.0 to 12.0. For the columns prepared by “one-pot” approach, the EOF decreased in the order of ViOcIm+Br > ViOcIm+BF4 > ViOcIm+PF6 > ViOcIm+NTf2 under the same CEC conditions; the ViOcIm+Br based column exhibited highest column efficiencies for the test small molecules; the ViOcIm+NTf2 based column possessed the strongest retention for aromatic hydrocarbons; and baseline separation of four standard proteins was achieved on ViOcIm+NTf2 based column corresponding to the highest column efficiency of 479 000 N m−1 for cytochrome c (Cyt c). These results indicated that the property of ILs based columns could be tuned successfully by changing anions, which gave these columns potential to separate both small molecules and macro biomolecules.  相似文献   

18.
Organic polymer monolithic capillary columns were prepared in fused-silica capillaries by radical co-polymerization of ethylene dimethacrylate and butyl methacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in the presence of various amounts of porogenic solvent mixtures and different concentration ratios of monomers and 1-propanol, 1,4-butanediol, and water. The chromatographic properties of the organic polymer monolithic columns were compared with those of commercial silica-based particulate and monolithic capillary and analytical HPLC columns. The tests included the determination of H-u curves, column permeabilities, pore distribution by inversed-SEC measurements, methylene and polar selectivities, and polar interactions with naphthalenesulphonic acid test samples. Organic polymer monolithic capillary columns show similar retention behaviour to chemically bonded alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have lower methylene selectivities and do not show polar interactions with sulphonic acids. The commercial capillary and analytical silica gel-based monolithic columns showed similar selectivities and provided symmetrical peaks, indicating no significant surface heterogeneities. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra-column contributions. With 0.3 mm ID capillary columns, corrections for extra-column volume contributions are sufficient, but to obtain true information on the efficiency of 0.1 mm ID capillary columns, the experimental bandwidths should be corrected for extra-column contributions to peak broadening.  相似文献   

19.
20.
A series of micro-monolithic columns with different porosities were prepared for capillary electrochromatography (CEC) by in-situ copolymerization of butyl methacrylate, ethylene glycol dimethacrylate, and 2-acrylamido-2-methyl-1-propane-sulfonic acid in the presence of a porogen in fused-silica capillaries of 100 microm I.D. Different column porosities were obtained by changing the ratios of monomers to porogenic solvents. Columns were investigated and evaluated under both pressure-driven (high-performance liquid chromatography, HPLC) and electro-driven (capillary electrochromatography, CEC) conditions. Each column exhibited different efficiency and dependency on flow velocity under electro-driven conditions. Abnormally broad peaks for some relatively bulky molecules were observed. Possible explanations are discussed. The differences in column efficiency and retention behavior between the two eluent-driven modes were studied in detail. In addition, other column properties, such as morphology, porosity, stability and reproducibility, were extensively tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号