首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degummed silk filament was pulverized with a home‐made machine to obtain the silk fibroin (SF) powder with the diameter of around 3 µm. The resulting SF powder was blended with waterborne polyurethane (WPU) aqueous dispersion, and then was dried and compression‐molded to prepare novel blended materials with improved miscibility and mechanical properties. WPU acted as a plasticizer and one of the components for the blends during the compression‐molded process. The structure, morphology, and properties of the blended films were investigated. The results indicated that β‐sheet of SF existed in the blended films. The SEM images showed that the cross‐section of the blended films exhibited an overall homogeneous morphology. Furthermore, the transmission electron microscope observation exhibited that some sphere‐like SF particles were well dispersed in the WPU matrix. The hydrogen bond interaction between SF and WPU in the blended films led to an increase of the glass transition temperature for the soft segment of WPU in the blended films. The blended films showed an improved Young's modulus and tensile strength from 1.2 to 288.9 MPa and 0.3 to 16.5 MPa, respectively, with the increasing of SF up to a content of 70 wt%. The hydrogen‐bonding interactions existing in SF and WPU and compression molding method played the important role in improving the miscibility and mechanical properties of the blended films. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Physical and chemical structure, as well as thermal behavior of solution-cast regenerated films, prepared from tussah (Antheraea pernyi) silk fibroin, were compared with those of solution-cast native films, in order to ascertain whether treatment (degumming, dissolution) used for preparation affected their properties. Regenerated fibroin films exhibited a higher thermal stability than native ones, as shown by differential scanning calorimetry, thermomechanical analysis, and dynamic mechanical behavior. Glass transition temperature and other relevant thermal transitions of the regenerated silk specimen shifted to higher temperatures compared with those of native specimen. Molecular conformation and crystalline structure did not show significant differences between the two kinds of silk films. Amino acid composition and molecular weight, however, distribution changed markedly after dissolving tussah silk fibroin fiber in concentrated LiSCN in polypeptide size was the main features for the regenerated silk fibroin. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
There is a growing interest in the use of silk as a biomaterial for tissue engineering. Silk threads from Bombyx mori have a fibrous core of fibroin, the protein responsible for biocompatibility and bioactivity, which is surrounded by a family of "gummy" proteins, called sericins, which are almost completely removed during silk degumming. Three different methanol treatments on regenerated fibroin films were used to convert viscous solutions of Silk I to an insoluble crystalline form (Silk II), in an attempt to devise new processing protocols for the creation of a cell guiding fibroin surface. Human fibroblasts (MRC5 line) were used as probes of the cell-biomaterial interaction in the early stages of the process (1 h, 3 h, 6 h and 4 d after seeding). The effect of each treatment on cell adhesion, spreading and distribution was monitored by scanning electron microscopy (SEM) and was correlated to superficial properties (like roughness and crystallinity) and fibroin conformation by means of atomic force microscopy (AFM), used in both topographical and acoustic mode, and attenuated total internal reflection infrared spectroscopy (FTIR-ATR). It was found that traditional methanol treatments where fibroin films were soaked in methanol solution produced roughness patterns that affected only the very early stages of fibroblast adhesion (until 3 h from seeding), while the new treatment proposed could really dialogue with the cells. Its non-homogeneous surface can explain the existence of cells spreading in specific directions and the presence of cell repellent areas even 4 d after seeding.  相似文献   

4.
The influence of repeated freeze–thawing on pore structural characteristics and physical properties of porous silk fibroin materials prepared by freeze drying were studied. It showed that when quick‐frozen silk fibroin solution was repeatedly thawed and frozen before being vacuum dried, thus pore size of prepared porous silk fibroin materials increased from 67 µm to about 120 µm, and pore density decreased from 80 per square millimeter to about 28 per square millimeter; at the same time compression ratio and moisture permeability increased from 22.7% and 230 g/m2 hr to about 33.7% and 308 g/m2 hr, respectively, tensile strength and dissolvability in hot water decreased from 20.2 N/cm2 and 42.7% to about 12.5 N/cm2 and 26.1%, respectively. Both the times of repeated thawing and the thawing temperature had a certain influence on the above‐mentioned pore characteristic parameters and physical properties. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
The physical structure and compatibility of solution-cast Antheraea pernyi/Bombyx mori silk fibroin blend films were stuided by differential scanning calorimetry (DSC), thermomechanical (TMA) and thermogravimetric (TGA) analysis, dynamic viscoelastic measurement, infrared spectroscopy, and x-ray diffractometry. The DSC curves of the blend films showed independent endotherms at 280 and 358°C, corresponding to the thermal decomposition of B. mori and A. pernyi silk fibroins with random coil conformation. The intensity was roughly proportionate to the amount of each component in the blend. The thermal behavior corresponding to the conformational transitions induced by heating on A. pernyi and B. mori silk fibroins overlapped in the temperature range 190–230°C. Thermal expansion and contraction properties, as well as weight retention behavior of the blend films were intermediate between the pure components, as shown by the TMA and TGA curves. The onset temperature of the storage modulus curve decreased markedly, approaching that of B. mori silk fibroin film when the amount of this component in the blend increased. The loss modulus curve of the blend films showed two peaks at ca. 190 and 210°C, the former corresponding to B. mori, and the latter to A. pernyi silk fibroin. Infrared spectra of the blends exhibited absorption bands characteristic of the pure components overlapping in the spectral region 2000–400 cm?1. The x-ray diffraction peaks at 23 and 21.5°, attributed to the crystalline spacings of A. pernyi and B. mori fibroins, respectively, overlapped in the diffraction curves of the blends, while the peak at 11.4°, of A. pernyi, increased as the content of this fibroin in the blend increased. The degree of crystallinity, calculated from the x-ray diffraction curves, diminished as the amount of B. mori silk fibroin decreased. A low degree of compatibility exists between the two fibroins when they are cast from aqueous solution in the experimental conditions adopted in this work. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Silk fibroin (SF) fiber from the Bombyx mori silkworm was treated with a 1.23 N iodine/potassium iodide (I2–KI) aqueous solution, and the structure and physical properties were investigated to elucidate the effects of the iodine treatment. The SF fiber absorbed polyiodide ions such as I and I by immersion in the I2–KI solution, and the weight gain of the SF fiber increased with the treatment time; it became saturated at about 20 wt % after 40 h. The results of the weight gain, Fourier transform infrared spectroscopy, and X‐ray diffraction measurements suggested that polyiodide ions mainly entered the amorphous region. Moreover, a new sharp reflection in the meridional direction, corresponding to a period of 7.0 Å, was observed and indicated the possibility of the formation of a mesophase structure of β‐conformation chains. Dynamic viscoelastic measurements showed that the molecular motion of the crystalline regions at about 220 °C was enhanced and shifted to lower temperature by the introduction of polyiodide ions. This indicated that the iodine component weakened the hydrogen bonding between the SF molecules forming the β‐sheet structure and caused molecular motion of the crystal to occur more easily with heating. With heating above 270 °C, the iodine component introduced intermolecular crosslinking to SF, and the melt flow of the sample was inhibited. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3418–3426, 2006  相似文献   

7.
The thermal and structural properties of binary blends of Nylon-6 (N6) and a chemically related biopolymer, Bombyx mori silk fibroin (SF), are reported in this work. Homopolymers and blends, in composition ratios of N6/SF ranging from 95/05 to 70/30, were investigated by thermogravimetric (TG) analysis, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and wide angle X-ray scattering (WAXS). Silk fibroin typically degrades at temperatures just above 210°C, which occurs within the melting endotherm of N6. In TG studies, the measured mass remaining was slightly greater than expected, indicating the blends had improved thermal stability. No beta sheet crystals of SF were detected by FTIR analysis of the Amide I region. Strong interaction between N6 and SF chains was observed, possibly as a result of formation of hydrogen bonds between N6 and SF chains. DSC analysis showed that the addition of SF to N6 caused a decrease in the crystallization temperature, the melting temperature of the lowest melting crystals and the crystallinity of N6. Furthermore, the α-crystallographic phase dominates and the γ-crystallographic phase was not observed in N6/SF blends, in contrast to the homopolymer N6, which contains both phases. We suggest that the addition of SF might result in changes of the chain extension of N6, which lead to the appearance of α-rather than γ-phase crystals.  相似文献   

8.
Silk fibroin exhibits excellent mechanical properties, good biocompatibility, and biodegradability combined with benign processing conditions, attracting considerable research interest for the application as biomedical materials. Among the diverse forms of sponges, hydrogels, films, and mats manufactured from silk fibroin, films are especially appealing due to the high water and oxygen permeability, good cell attachment, and low immunogenicity. Fabrication of silk fibroin films with novel properties has been successfully developed simply by incorporating various functional components into it. In the present study, the properties of thermal insulation and temperature monitoring for the silk fibroin film are demonstrated for the first time through the incorporation of thermochromic microcapsules within it. Moreover, the silk fibroin film is also endowed with improved mechanical properties in terms of tension strength and elongation at break because of the reinforcing effect of thermochromic microcapsules. The silk fibroin film fabricated with novel features in this study can be a good candidate for the application of wound dressings, tissue engineering scaffolds, and bio‐related devices in the future. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1846–1852  相似文献   

9.
Unique nanocomposites consisting of poly(silicic acid) nanoparticles (PNs) and waterborne polyurethane (WPU) were prepared. The aliphatic WPU prepared in this study was end‐capped with a silanol group, which could react with PNs via a sol–gel process. PNs were modified with phenyltrimethoxysilane (PTMS) and 3‐(trimethoxysilyl)propyl ester (TMPE) and then blended with WPU. The structure–property relationships were examined. Solid‐state 29Si NMR spectra of WPU showed that structures T1, T2, and T3 of WPU decreased and structures Q3 and Q4 of PN/WPU nanocomposites increased gradually. When the PN concentration increased to 10 wt %, PN/WPU nanocomposites exhibited the maximum fraction of hydrogen‐bonded carbonyl groups. In the PTMS–PN and TMPE–PN systems, the fraction of hydrogen‐bonded carbonyl groups fluctuated stably when the concentrations of PTMS–PN and TMPS–PN exceeded 5 wt %. The X‐ray diffraction results revealed that α‐form, γ‐form, or triclinic crystallization could be found in the WPU matrix. A differential scanning calorimetry spectrum showed that the crystalline structure of the hard segment of WPU was influenced by the nanoparticle concentration. The degrees of crystallinity were 88% for the PN/WPU nanocomposites, 41% for the PTMS–PN/WPU nanocomposites, and 54% for the TMPE–PN/WPU nanocomposites when the PN, PTMS–PN, and TMPE–PN concentrations were 5 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1076–1089, 2005  相似文献   

10.
The waterborne polyurethane (WPU) was synthesized from the polycondensation between isophorone diisocyanate (IPDI) and polyoxypropylene glycol (N‐210) and then dispersed into water. Subsequently, the WPU emulsion was modified with antimony doped tin oxide (ATO) nanoparticle by ultrasonic dispersion. The ATO/WPU emulsion was cast onto Teflon molds. After being dried, ATO/WPU films were prepared. TEM indicated that the ATO nanoparticles were homogeneously dispersed in the polymer matrix at the nanometer scale. DSC showed that the ATO/WPU nanocomposites displayed increased glass transition temperatures compared to the control WPU. The mechanical properties of the films were characterized by dynamic‐mechanical analysis (DMA). The higher glass transition temperature and storage modulus indicates the superior mechanical properties of WPU modified by ATO nanoparticles over the conventional unmodified WPU. The thermal behaviors of the films were evaluated by thermogravimetric analysis (TGA). It could be found that the incorporation of ATO into WPU can improve the thermal stability dramatically. The results from UV–visible–near infrared spectra indicated that the ATO/WPU films could decrease the infrared transmission effectively. The heat‐insulation measurements showed that glass coated with ATO/WPU films possessed better heat‐insulating effect than empty glass. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A facile method was developed to synthesize a new type of polyhedral oligomeric silsesquioxane (POSS). It contained a single amine group and seven aliphatic moieties on its corners. FT‐IR, 1H‐NMR, 13C‐NMR, 13C‐1H COSY, and 1H‐1H COSY confirmed that cages with eight corners were the main part of the product. This new POSS was used to modify the structure of hexamethylene diisocyanate trimer and then copolymerized with hexamethylene diisocyanate and poly (tetramethylene glycol) to get a serious of waterborne polyurethane (WPU)/POSS hybrid materials with low dielectric constants for microelectronics applications. The results showed that POSS particles were uniformly dispersed in the WPU dispersions. The WPU/POSS films did not show any macrophase separation, even when the POSS content was as high as 16%. As the POSS content increased from 0% to 16%, the tensile strength was increased from 2.3 to 7.3 MPa, the dielectric constant was decreased from about 2.9 to 2.0, and the thermal stability of the WPU/POSS was also improved.  相似文献   

12.
Abstract

To examine the reinforcing effects of isocyanated graphene oxide (NCO-GO) on a waterborne polyurethane matrix, the surface of GO was respectively modified by isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI) and toluene diisocyanates (TDI) and then confirmed by FT-IR, Raman, TGA, XRD, TEM, AFM and SEM-EDS. The dispersity behavior between different NCO-GO and polymer was evaluated by FESEM and XRD. The nanocomposites’ chemical structure, emulsion morphology, hydrophobicity, thermal and mechanical properties were investigated by FT-IR, TEM, TGA, tensile testing machine and water contact angle test, respectively. It was shown that these properties of nanocomposites including tensile strength, initial thermal degradation and hydrophobicity were increased by the incorporation of NCO-GO, in which, particularly, the tensile stress and initial degradation temperature were respectively increased from 13.32 to 18.80?Mpa and 249 to 288?°C after the addition of TDI-GO. These superior reinforcing effects were attributed to the two-dimensional structure of NCO-GO as well as the good interfacial adhesion between the NCO-GO and WPU matrix.  相似文献   

13.
A novel waterborne hyperbranched polyurethane acrylate for aqueous dispersions (WHPUDs) based on hydroxy‐functionalized hyperbranched aliphatic polyester Boltorn? H20 was investigated. The effects of structural composition and crosslinking density have been studied in terms of swellability by water, thermal degradation, viscosity changes as well as transmission electron microscopy (TEM) morphology. The swell ratio showed an increasing trend with the higher concentration of ionic group, which is due to the increased total surface area of particles. The results of thermogravimetric analysis (TGA) for cured WHPUD films indicated good thermal stability with no appreciable weight loss until 200°C. The activation energies were evaluated and were found in the range 154–186 kJ mol?1. It was observed that an increase in hard segment content provoked the increases in thermal degradation temperature and activation energy of waterborne dispersions. The transmission electron photographs revealed that the average particle sizes of aqueous dispersions were in the range 30–125 nm. Owing to the enlargement of the stabilization site, the particle size decreased as the content of carboxyl group and degree of neutralization increased. The viscosity of WHPUDs increased rapidly with increasing the degree of neutralization. Moreover, water showed a favorable viscosity reduction effect. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The influence of the morphology on the mechanical properties of binary styrene–butadiene (SB) triblock copolymer blends of a thermoplastic block copolymer and a thermoplastic elastomer (TPE) with different molecular architectures was studied with bulk samples prepared from toluene. Both block copolymers contained SB random copolymer middle blocks, that is, the block sequence S–SB–S. The two miscible triblock copolymers were combined to create a TPE with increased tensile strength without a change in their elasticity. The changes in the equilibrium morphology of the miscible triblock copolymer blends as a function of the TPE content (lamellae, bicontinuous morphology, hexagonal cylinders, and worms) resulted in a novel morphology–property correlation: (1) the strain at break and Young's modulus of blends with about 20 wt % TPE were larger than those of the pure thermoplastic triblock copolymer; (2) at the transition from bicontinuous structures to hexagonal structures (~35 wt % TPE), a change in the mechanical properties from thermoplastic to elastomeric was observed; and (3) in the full range of wormlike and hexagonal morphology (60–100 wt % TPE), elastomeric properties were observed, the strength greatly increasing and high‐strength elastomers resulting. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 429–438, 2005  相似文献   

15.
Hydrogels with improved mechanical properties have been particularly attractive for their applications in the biomedical area including wound healing. For this purpose, a series of novel composite hydrogels based on silk fibroin (SF) and 2-(N,N-dimethylamino) ethyl methacrylate (DMAEMA) were fabricated. The swelling and mechanical tests indicated that an optimum design of hydrogel was essential to provide a high degree of water uptake, higher tensile strength and elongation at break values. Here, the S40D60 was exhibited superior swelling and strong mechanical characteristics than all the other hydrogels with different compositions. Furthermore, it was observed that the cefixime was released from the formulation of S40D60 in a sustainable manner and the drug release rate can be controlled by pH of the dissolution medium. According to these findings, it is suggested that the optimal formulation of S40D60 would be effectively performed in situ drug therapy for wound healing.  相似文献   

16.
Structural changes of tussah (Antheraea pernyi) silk fibroin films induced by heat treatment were studied as a function of the treatment temperature in the range 200–250°C. The DSC curve of tussah films with α-helix molecular conformation displayed characteristic endo and exo peaks at 216 and 226°C, respectively. These peaks first weakened and then completely disappeared after heating at 230°C. Accordingly, the TMA thermal shrinkage at 206°C disappeared when the films were heated at 230°C. The onset of weight loss was monitored at 210°C by means of TG measurements. X-ray diffraction profiles gradually changed from α-helix to β-sheet crystalline structure as the treatment temperature increased from 200 to 250°C. On raising the heating temperature above 200°C, the intensity of IR and Raman bands characteristic of β-sheet conformation increased in the whole ranges of amide and skeletal modes. The sample treated at 200°C showed a spectral pattern intermediate between α-helix and β-sheet molecular conformation. The IR marker band for random coil structure, still detectable at 200°C, disappeared at higher treatment temperatures. Spectral changes attributable to the onset of thermal degradation appeared at 230°C. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 841–847, 1997  相似文献   

17.
The properties of polyurethane (PU) nanocomposites with three different organoclays were compared in terms of their thermal stabilities, mechanical properties, morphologies, and gas permeabilities. Hexadecylamine–montmorillonite, dodecyltrimethyl ammonium–montmorillonite, and Cloisite 25A were used as organoclays for making PU hybrid films. The properties were examined as a function of the organoclay content in a matrix polymer. Transmission electron microscopy photographs showed that most clay layers were dispersed homogeneously into the matrix polymer on the nanoscale, although some particles of clay were agglomerated. Moreover, the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PU hybrid films, whereas gas permeability was reduced. Even polymers with low organoclay contents (3–4 wt %) showed much higher strength and modulus values than pure PU. Gas permeability was reduced linearly with an increasing amount of organoclay in the PU matrix. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 670–677, 2002; DOI 10.1002/polb.10124  相似文献   

18.
Hybrid organic/inorganic nanocomposites based on polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals and nylon 6 were prepared via melt mixing. Two structurally and chemically different POSS molecules, a closed cage, nonpolar octaisobutyl POSS (Oib‐POSS) and an open cage, polar trisilanolphenyl POSS (Tsp‐POSS) with differing predicted solubility parameters were evaluated in the nylon matrix. Surface analysis, including quasi‐static and dynamic nanoindentation and nanotribological techniques, revealed exceptional improvements in modulus and hardness along with significant reductions in friction. Additionally, surface wetting characteristics of the nylon were reversed, with POSS incorporation yielding low surface energy, highly hydrophobic surfaces. AFM, TEM/EDAX, spectroscopic techniques and thermomechanical analysis were used to evaluate nanoscale dispersion and bulk properties of the composites. Both POSS molecules exhibit preferential surface segregation behavior in the nylon matrix. Tsp‐POSS, with its higher predicted solubility in nylon, exhibited enhanced dispersion and tribomechanical properties at both nano and bulk scale. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1088–1102, 2009  相似文献   

19.
The conjugation of peptides/proteins and synthetic polymers is a useful strategy to overcome some of the limitations related to the use of the individual components. This review will highlight two aspects: enhanced structural control at the nanometer level and improved performance, in particular with respect to biomedical applications. In the former case, peptide sequences are mainly used to mediate self-assembly of synthetic polymers. In the latter case, conjugation of an appropriate synthetic polymer to a pharmaceutically active peptide/protein can, for example, prevent premature enzymatic degradation and enhance blood circulation times, which is therapeutically advantageous.  相似文献   

20.
This study investigates the effects of variable pressure conditions (550 and 1013 mbar) on the physico-mechanical and structural properties of flexible polyurethane foam, incorporating different compositions of calcium carbonate (CaCO3) filler. The objective is to achieve sustained mechanical and structural properties of flexible polyurethane foam while reducing costs through variable pressure foaming technology. With CaCO3 filler concentrations ranging from 20 to 100 parts per hundred (pphp) of polyol, it was found that foam produced at low pressure (550 mbar) demonstrated improved resilience and durability, particularly with CaCO3 compositions up to 100 pphp. Conversely, foam produced at standard atmospheric pressure (1013 mbar) using compositions up to 100 pphp did not exhibit significant enhancements in physico-mechanical properties. The study employs various characterization techniques, including mechanical testing, scanning electron microscopy, differential scanning calorimetry, thermal gravimetric analysis, and Fourier transform infrared spectroscopic analysis, to assess the flexible polyurethane foam. It provides a detailed examination of the effects of variable pressure on cellular structure, cell size, filler distributions, mechanical properties, and thermal stability of flexible polyurethane foam using CaCO3 filler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号