首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescence and photodissociation of rhodamine 575 cations confined to a quadrupole ion trap are observed during laser irradiation at 488 nm. The kinetics of photodissociation is measured by time-dependent mass spectra and time-dependent fluorescence. The rhodamine ion signal and fluorescence decay are studied as functions of buffer gas pressure, laser fluence, and irradiation time. The decay rates of the ions in the mass spectra agree with decay rates of the fluorescence. Some of the fragment ions also fluoresce and further dissociate. The photodissociation rate is found to depend on the incident laser fluence and buffer gas pressure. The implications of rapid absorption/fluorescence cycling for photodissociation of dye-labeled biomolecular ions under continuous irradiation are discussed.  相似文献   

2.
The electric fields responsible for mass-selective axial ejection (MSAE) of ions trapped in a linear quadrupole ion trap have been studied using a combination of analytic theory and computer modeling. Axial ejection occurs as a consequence of the trapped ions' radial motion, which is characterized by extrema that are phase-synchronous with the local RF potential. As a result, the net axial electric field experienced by ions in the fringe region, over one RF cycle, is positive. This axial field depends strongly on both the axial and radial ion coordinates. The superposition of a repulsive potential applied to an exit lens with the diminishing quadrupole potential in the fringing region near the end of a quadrupole rod array can give rise to an approximately conical surface on which the net axial force experienced by an ion, averaged over one RF cycle, is zero. This conical surface has been named the cone of reflection because it divides the regions of ion reflection and ion ejection. Once an ion penetrates this surface, it feels a strong net positive axial force and is accelerated toward the exit lens. As a consequence of the strong dependence of the axial field on radial displacement, trapped thermalized ions can be ejected axially from a linear ion trap in a mass-selective way when their radial amplitude is increased through a resonant response to an auxiliary signal.  相似文献   

3.
Electrospray ionization mass spectrometry (ESI-MS) is increasingly used to probe the nature of noncovalent complexes; however, assessing the relevance of gas-phase results to structures of complexes in solution requires knowledge of the types of interactions that are maintained in a solventless environment and how these might compare to key interactions in solution. This study addresses the factors impacting the strength of hydrogen bonding noncovalent interactions in the gas phase. Hydrogen bonded complexes consisting of ammonium ions bound to polydentate ethers are transported to the gas phase with ESI, and energy-variable collisional activated dissociation (CAD) is used to map the relative dissociation energies. The measured relative dissociation energies are correlated with the gas-phase basicities and steric factors of the amine and polyether constituents. To develop correlations between hydrogen bonding strength and structural features of the donor and acceptor molecules, a variety of amines with different gas-phase basicities and structures were selected, including primary, secondary, and tertiary amines, as well as those that are bidentate to promote intramolecular hydrogen bonding. The acceptor molecules are polydentate ethers, such as 18-crown-6. Four primary factors influence the observed dissociation energies of the polyether/ammonium ion complexes: the gas-phase basicities of the polyether and amine, steric effects of the amines, conformational flexibility of the polyethers, and the inhibition of intramolecular hydrogen bonds of the guest ammonium ions in the resulting ammonium/polyether noncovalent complexes.  相似文献   

4.
The photodissociation by 157 nm light of singly- and doubly-charged peptide ions containing C- or N-terminal arginine residues was studied in a linear ion trap mass spectrometer. Singly-charged peptides yielded primarily x- and a-type ions, depending on the location of the arginine residue, along with some related side-chain fragments. These results are consistent with our previous work using a tandem time-of-flight (TOF) instrument with a vacuum matrix-assisted laser desorption/ionization (MALDI) source. Thus, the different internal energies of precursor ions in the two experiments seem to have little effect on their photofragmentation. For doubly-charged peptides, the dominant fragments observed in both photodissociation and collisionally induced dissociation (CID) experiments are b- and y-type ions. Preliminary experiments demonstrating fragmentation of multiply-charged ubiquitin ions by 157 nm photodissociation are also presented.  相似文献   

5.
Some ions exhibit "ion fragility" in quadrupole ion trap mass spectrometry (QIT-MS) during mass analysis with resonance ejection. In many cases, different ions generated from the same compound exhibit different degrees of ion fragility, with some ions (e.g., the [M+H](+) ion) stable and other ions (e.g., the [M+Na](+) ion) fragile. The ion fragility for quadrupole ion trap (QIT) mass spectrometry (MS) for protonated and sodiated ions of three phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, PC (16:0/16:0), 1,2-dipalmitoyl-sn-glycero-3-phophoethanolamine, PE (16:0/16:0), and N-palmitoyl-D-erythro-sphingosylphosphorylcholine, SM (d18:1/16:0), was determined using three previously developed experiments: 1) the peak width using a slow scan speed, 2) the width of the isolation window for efficient isolation, and 3) the energy required for collision-induced dissociation. In addition, ion fragility studies were designed and performed to explore a correlation between ion fragility in QIT mass analysis and ion fragility during transport between the ion source and the ion trap. These experiments were: 1) evaluating the amount of thermal-induced dissociation as a function of heated capillary temperature, and 2) determining the extent of fragmentation occurring with increasing tube lens voltage. All phospholipid species studied exhibited greater ion fragility as protonated species in ion trap mass analysis than as sodiated species. In addition, the protonated species of both SM (d18:0/16:0) and PC (16:0/16:0) exhibited greater tendencies to fragment at higher heated capillary temperatures and high tube lens voltages, whereas the PE (16:0/16:0) ions did not appear to exhibit fragility during ion transport.  相似文献   

6.
The resonant frequencies for quadrupole excitation of ions confined with a buffer gas in a linear quadrupole ion trap with Mathieu parameters a = 0 and q ∼ 0.36 have been measured. The resonances are predicted to occur at angular frequencies ω n K given by ω n K = (Ώ/K)|n + β| without the presence of a buffer gas where ϒ is the angular frequency of the trapping radio frequency, K = 1,2,3 … is the order of the resonance calculated with perturbation theory, and n = 0, ±1, ±2, ±3 …. The resonances are measured through fragmentation of protonated reserpine. The observed frequencies agree closely with the theoretical values but there are small differences which vary from +0.6% at K = 2 to −2.7% at K = 6. This is believed to be the result of the dependence of the resonant frequencies upon the buffer gas density and/or the excitation amplitude. The resolution of the resonances (measured from the depletion of precursor and formation of fragment ions) increased by a factor of 2 as K increased from 1 to 6. This increase in resolution warrants further investigation into the use of higher order resonances for isolation and excitation of trapped ions.  相似文献   

7.
8.
9.
A set of three heparin-derived disaccharide deprotonated ions was isolated in a linear ion trap and subjected to UV laser irradiation in the 220–290 nm wavelength range. The dissociation yields of the deprotonated molecular ions were recorded as a function of laser wavelength. They revealed maximum absorption at 220 nm for the nonsulfated disaccharide, but centered at 240 nm for the sulfated species. The comparison of the fragmentation patterns between ultraviolet photodissociation (UVPD) at 240 nm and CID modes showed roughly the same distribution of fragment ions resulting from glycosidic bond cleavages. Interestingly, UVPD favored additional cross ring cleavages of A and X type ion series enabling easier sulfate group location. It also reduced small neutral losses (H2O).  相似文献   

10.
The hydrogen/deuterium (H/D) exchange of gas-phase ions of holo- and apo-myoglobin has been studied by confining the ions in a linear quadrupole ion trap with D(2)O or CD(3)OD at a pressure of several mTorr. Apo-myoglobin ions were formed by collision-induced dissociation of holo-myoglobin ions between the orifice and skimmer of the ion sampling system. The exchange takes place on a time scale of seconds. Earlier cross section measurements have shown that holo-myoglobin ions can have more compact structures than apo-myoglobin. Despite this, both holo-myoglobin and apo-myoglobin in charge states +8 to +14 are found to exchange nearly the same number of hydrogens (ca. 103) in 4 s. It is possible the ions fold or unfold to new conformations on the much longer time scale of the exchange experiment compared with the cross section measurements.  相似文献   

11.
A focused laser is used to make infrared multiphoton photodissociation (IRMPD) more efficient in a quadrupole ion trap mass spectrometer. Efficient (up to 100%) dissociation at the standard operating pressure of 1 × 10−3 Torr can be achieved without any supplemental ion activation and with shorter irradiation times. The axial amplitudes of trapped ion clouds are measured using laser tomography. Laser flux on the ion cloud is increased six times by focusing the laser so that the beam waist approximates the ion cloud size. Unmodified peptide ions from 200 Da to 3 kDa are completely dissociated in 2.5–10 ms at a bath gas pressure of 3.3 × 10−4 Torr and in 3–25 ms at 1.0 × 10−3 Torr. Sequential dissociation of product ions is increased by focusing the laser and by operating at an increased bath gas pressure to minimize the size of the ion cloud.  相似文献   

12.
Methods to reduce mass shifts caused by space charge with mass‐selective axial ejection from a linear quadrupole ion trap are investigated. For axial ejection, dipole excitation is applied to excite ions at q ≈ 0.85. The trapping radiofrequency (rf) voltage is scanned to bring ions of different m/z values into resonance for excitation. In the fringing field at the quadrupole exit, excited ions gain axial kinetic energy, overcoming the trapping potential, and are ejected from the trap. Space charge causes the frequencies of ion oscillation to decrease. Thus, greater rf voltages are required to bring ions into resonance for excitation and ejection, and the ions shift to higher apparent masses in a mass spectrum. At the same time, the peaks broaden, lowering resolution. The effects of injection q value, ejection q value, excitation amplitude, quadrupole dc voltages applied to the electrodes, applying an rf voltage to the exit lens, and scan speed, on mass shifts have been studied experimentally. Most experiments were done with only ions of protonated reserpine (m/z 609.3 and its isotopic peaks) in the trap. Some experiments were done with ions of protonated reserpine and ions of m/z 622 in the trap. In general, the mass shifts are reduced with higher ejection q values, higher excitation amplitudes, with quadrupole dc applied, and at higher scan speeds. The application of quadrupole dc appears to increase the ion cloud temperature, which lowers mass shifts. Thus, a proper choice of operating conditions can reduce, but not eliminate, mass shifts caused by space charge. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A new method of selective ion storage in a quadrupole ion trap is described. Broadband waveforms were applied to the endcaps of an ion trap to eject unwanted ions by resonance excitation, which enhanced the storage of selected target ions. A unique trapping field amplitude modulation technique allowed the use of waveforms with fewer frequency components. The requirements and methods of calculations for frequency-optimized wave-forms are discussed. Advantages of this method include the reduction of target ion loss that results from collision-activated dissociation. In other applications, equivalent performance, relative to methods that use nonmodulated trapping fields combined with waveforms that have a higher frequency density, was shown.  相似文献   

14.
Ion excitation in a linear quadrupole ion trap with an added octopole field   总被引:2,自引:0,他引:2  
Modeling of ion motion and experimental investigations of ion excitation in a linear quadrupole trap with a 4% added octopole field are described. The results are compared with those obtained with a conventional round rod set. Motion in the effective potential of the rod set can explain many of the observed phenomena. The frequencies of ion oscillation in the x and y directions shift with amplitude in opposite directions as the amplitudes of oscillation increase. Excitation profiles for ion fragmentation become asymmetric and in some cases show bistable behavior where the amplitude of oscillation suddenly jumps between high and low values with very small changes in excitation frequency. Experiments show these effects. Ions are injected into a linear trap, stored, isolated, excited for MS/MS, and then mass analyzed in a time-of-flight mass analyzer. Frequency shifts between the x and y motions are observed, and in some cases asymmetric excitation profiles and bistable behavior are observed. Higher MS/MS efficiencies are expected when an octopole field is added. MS/MS efficiencies (N(2) collision gas) have been measured for a conventional quadrupole rod set and a linear ion trap with a 4% added octopole field. Efficiencies are chemical compound dependent, but when an octopole field is added, efficiencies can be substantially higher than with a conventional rod set, particularly at pressures of 1.4 x 10(-4) torr or less.  相似文献   

15.
A new type of quadrupole linear ion trap mass spectrometer, Q TRAP trade mark LC/MS/MS system (Q TRAP trade mark ), was evaluated for its performance in two studies: firstly, the in vitro metabolism of gemfibrozil in human liver microsomes, and, secondly, the quantification of propranolol in rat plasma. With the built-in information-dependent-acquisition (IDA) software, the instrument utilizes full scan MS in the ion trap mode and/or constant neutral loss scans as survey scans to trigger product ion scan (MS(2)) and MS(3) experiments to obtain structural information of drug metabolites 'on-the-fly'. Using this approach, five metabolites of gemfibrozil were detected in a single injection. This instrument combines some of the unique features of a triple quadrupole mass spectrometer, such as constant neutral loss scan, precursor ion scan and multiple reaction monitoring (MRM), together with the capability of a three-dimensional ion trap. Therefore, it becomes a powerful instrument for metabolite identification. The fast duty cycle in the ion trap mode allows the use of full product ion scan for quantification. For the quantification of propranolol, both MRM mode and full product ion scan in the ion trap mode were employed. Similar sensitivity, reproducibility and linearity values were established using these two approaches. The use of the product ion scan mode for quantification provided a convenient tool in selecting transitions for improving selectivity during the method development stage.  相似文献   

16.
A modified Finnigan LCQ quadrupole ion trap has been used to determine the equilibrium constant of the complexation reaction of thiophenolate with 2,2,2-trifluoroethanol. The process is particularly useful as a thermometer reaction because it has an exceptionally large temperature dependence. Using literature values for the thermochemistry, an effective ion temperature of 310 ± 20 K is indicated for the ion trap. This value is much lower than some earlier estimates for ion traps, but is consistent with a recent theoretical analysis and some previous interpretations of experimental data. The results suggest that quadrupole ion traps are suitable for studying gas phase reactions under nearly thermal conditions.  相似文献   

17.
The gas phase H/D exchange reaction of bradykinin ions, as well as fragment ions of bradykinin generated through collisions in an orifice skimmer region, have been studied with a linear quadrupole ion trap (LIT) reflectron time-of-flight (rTOF) mass spectrometer system. The reaction in the trap takes only tens of seconds at a pressure of few mTorr of D2O or CD3OD. The exchange rate and hydrogen exchange level are not sensitive to the trapping q value over a broad range, provided q is not close to the stability boundary (q = 0.908). The relative rates and hydrogen exchange levels of protonated and sodiated +1 and +2 ions are similar to those observed previously by others with a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer system. The doubly and triply protonated ions show multimodal isotopic distributions, suggesting the presence of several different conformations. The y fragment ions show greater exchange rates and levels than a or b ions, and when water or ammonia is lost from the fragment ions, no exchange is observed.  相似文献   

18.
The use of a new hybrid quadrupole/linear ion trap known as the Q TRAP offers unique benefits as a LC-MS-MS detector for both small and large molecule analyses. The instrument combines the capabilities of a triple quadrupole mass spectrometer and ion trap technology on a single platform. Product ion scans are conducted in a hybrid fashion with the fragmentation step accomplished via acceleration into the collision cell followed by trapping and mass analysis in the Q3 linear ion trap. This results in triple quadrupole fragmentation patterns with no inherent low molecular mass cutoff. In-trap fragmentation is also possible in order to provide triple MS (MS3) capabilities. There are also several scan modes that are not possible on conventional instruments that enable identification of analytes within complex biological matrixes for subsequent high sensitivity product ion scans. This report will describe the new hybrid instrument and the principles of operation, and also provide examples of the unique scan modes and capabilities of the Q TRAP for LC-MS-MS detection in metabolism identification.  相似文献   

19.
Contributions of higher-order fields to the quadrupolar storage field produce nonlinear resonances in the quadrupole ion trap. Storing ions with secular frequencies corresponding to these nonlinear resonances allows adsorption of power from the higher-order fields. This results in increased axial and radial amplitudes which can cause ion ejection and collision-induced dissociation (CID). Experiments employing long storage times and/or high ion populations, such as chemical ionization, ion-molecule reaction studies, and resonance excitation CID, can be particularly susceptible to nonlinear resonance effects. The effects of higher-order fields on stored ions are presented and the influence of instrumental parameters such as radiofrequency and direct current voltage (qz and az values), ion population, and storage time are discussed.  相似文献   

20.
A simple model provides a basis for evaluating the ion spatial distribution in a uadrupole (Paul) ion trap and its effect on the total potential (trap potential plus space charge 3 acting on ions in the trap. By combining the pseudopotential approximation introduced by Dehmelt 25 years ago with the assumption of thermal equilibrium (leading to a Boltzmann ion energy distribution), the resulting ion spatial distribution (for ions of a single mass-to-charge ratio) depends only on total number of ions, trap pseudopotential, and temperature. (The equilibrium assumption is justified by the high helium bath gas pressure at which analytical quadrupole ion traps are typically operated.) The electric potential generated by the ion space charge may be generated from Poisson’s equation subject to a Boltzmann ion energy distribution. However, because the ion distribution depends in turn on the total potential, solving for the potential and the ion distribution is no longer a simple boundary condition differential equation problem; an iterative procedure is required to obtain a self-consistent result. For the particularly convenient operating condition, (a z = -8qU/m? 0 2 Ω2, and q z =-4qV m? 0 2 Ω2, where U and V are direct current and radiofrequency (frequency, ω) voltages applied to the trap, m/q is ion mass-to-charge ratio, and ?0 is the radius of the ring electrode at the z=0 midplane], both the pseudopotential and the ion distribution become spherically symmetric. The resulting one-dimensional problem may be solved by a simple optimization procedure. The present model accounts qualitatively for the dependence of total potential and ion distribution on number of ions (higher ion density or lower temperature flattens the total potential and widens the spatial distribution of ions) and pseudopotential (higher pseudopotential increases ion density near the center of the trap without widening the ion spatial distribution).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号