首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A bioanalytical method for the quantification of tacrolimus (TAC) on dried blood spots (DBS) using liquid chromatography, electrospray ionization coupled with tandem mass spectrometry (LC‐ESI‐MS/MS) was developed and validated. It involves solvent extraction of a punch disk of DBS followed by liquid–liquid extraction. The analyte and the internal standard (IS, ascomycin) were separated on a phenyl column using an isocratic mobile phase elution at a flow rate of 0.3 mL/min. The assay was linear from 1 to 80 ng/mL. The mean recovery of TAC was 76.6%. Intra‐assay, inter‐assay imprecision and biases were all less than 15%. TAC on DBS was stable for at least 10 days at room temperature, and at least 24 h at 50°C. A chromatographic effect of the filter paper (Whatman 903) was not detected. The volume of blood (15–50 μL) and hematocrit of blood (ranging from 23.2 to 48.6%) did not show a significant influence on detection of TAC concentration by DBS‐LC‐MS/MS. Fifty samples from patients were detected by both DBS‐LC‐MS/MS and microparticle enzyme‐linked immunoassay (MEIA). TAC concentrations measured by DBS‐LC‐MS/MS method tended to be lower than those by MEIA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Rapid, simple and reliable HPLC/UV and LC‐ESI‐MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C30 column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC‐ESI‐MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC‐ESI‐MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC‐ESI‐MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC‐ESI‐MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Fan Wang  Hongxia Zeng  Jian Wang 《Chromatographia》2013,76(23-24):1683-1695
Nineteen impurities in roxithromycin drug substance made in China were separated and identified by HPLC–MSn (TOF and TRAP) for the further improvement of official monographs in Pharmacopoeias. The fragmentation patterns and structural assignment of these impurities were studied. The column was Shim VP-ODS (250 × 4.6 mm, 5 μm). The mobile phase was 10 m mol L?1 ammonium acetate and 0.1 % formic acid aqueous solution-acetonitrile (62.5:37.5). In positive mode, full scan LC–MS was first performed to obtain the m/z value of the protonated molecules and formulas of all detected peaks on Agilent 6538Q TOF high resolution mass spectrometer. LC–MS-MS and LC–MS-MS–MS were then carried out on the compounds of interest on AB SCIEX 4000 Q TRAP? composite triple quadrupole/linear ion trap tandem mass spectrometer. The complete fragmentation patterns of nineteen impurities were studied and used to obtain information about the structures of these impurities. The structures of nineteen impurities in roxithromycin drug substance were deduced based on the HPLC–MSn data, in which nine impurities were novel impurities.  相似文献   

4.
Wang  Fan  Zeng  Hongxia  Wang  Jian 《Chromatographia》2013,76(23):1683-1695

Nineteen impurities in roxithromycin drug substance made in China were separated and identified by HPLC–MSn (TOF and TRAP) for the further improvement of official monographs in Pharmacopoeias. The fragmentation patterns and structural assignment of these impurities were studied. The column was Shim VP-ODS (250 × 4.6 mm, 5 μm). The mobile phase was 10 m mol L−1 ammonium acetate and 0.1 % formic acid aqueous solution-acetonitrile (62.5:37.5). In positive mode, full scan LC–MS was first performed to obtain the m/z value of the protonated molecules and formulas of all detected peaks on Agilent 6538Q TOF high resolution mass spectrometer. LC–MS-MS and LC–MS-MS–MS were then carried out on the compounds of interest on AB SCIEX 4000 Q TRAP™ composite triple quadrupole/linear ion trap tandem mass spectrometer. The complete fragmentation patterns of nineteen impurities were studied and used to obtain information about the structures of these impurities. The structures of nineteen impurities in roxithromycin drug substance were deduced based on the HPLC–MSn data, in which nine impurities were novel impurities.

  相似文献   

5.
This study presents the atmospheric pressure photoionization (APPI) of high‐chlorinated (five or more chlorine atoms) polychlorinated biphenyls (PCBs) using toluene as dopant, after liquid chromatographic separation. Mass spectra of PCB 101, 118, 138, 153, 180, 199, 206 and 209 were recorded by using liquid chromatography‐APPI‐tandem mass spectrometry (LC‐APPI‐MS/MS) in negative ion full scan mode. Intense peaks appeared at m/z that correspond to [M ? Cl + O]? ions, where M is the analyte molecule. Furthermore, a detailed strategy, which includes designs of experiments, for the development and optimization of LC‐APPI‐MS/MS methods is described. Following this strategy, a sensitive and accurate method with low instrumental limits of detection, ranging from 0.29 pg for PCB 209 to 8.3 pg for PCB 101 on column, was developed. For the separation of the analytes, a Waters XSELECT HSS T3 (100 mm × 2.1 mm, 2.5 µm) column was used with methanol/water as elution system. This method was applied for the determination of the above PCBs in water samples (surface water, tap water and treated wastewater). For the extraction of PCBs from water samples, a simple liquid–liquid extraction with dichloromethane was used. Method limits of quantification, ranged from 4.8 ng l?1, for PCB 199, to 9.4 ng l?1, for PCB 180, and the recoveries ranged from 73%, for PCB 101, to 96%, for PCB 199. The estimated analytical figures were appropriate for trace analysis of high‐chlorinated PCBs in real samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The European Pharmacopoeia (Ph. Eur.) describes liquid chromatography-ultraviolet (LC-UV) methods using C18 stationary phases for the analysis of polymyxin B and colistin.Several unknown impurities were detected in commercial samples of those polypeptide complexes. However, the Ph. Eur. does not specify any related substances for polymyxin B and colistin. Since both methods use non-volatile buffers, the mobile phases were incompatible with mass spectrometry (MS). For the identification of related substances in bulk samples by LC/MS, volatile mobile phase systems were developed. However, the LC/MS methods (with volatile additives) showed inferior chromatographic separation compared to the LC-UV method (with non-volatile additives). Moreover, previously identified impurities by LC/MS could not be assigned in LC-UV methods as the separation in both systems was different.In this study, known impurities were traced in the LC-UV methods and new impurities present in polymyxin B and colistin bulk samples were characterized. To achieve this, each peak from the non-volatile system was collected separately and reinjected into an LC system with a volatile mobile phase coupled to MS. This way, collected impurity peaks were rechromatographed on a reversed phase column in order to separate the analyte from the buffer salts. Using this method, out of 39 peaks, five novel related substances were characterized in a polymyxin B bulk sample. Fourteen impurities, which were already reported in the literature were traced as good as possible in the LC-UV method. In the case of colistin, a total of 36 peaks were investigated, among which four new compounds. Additionally, 30 known impurities were traced in the LC-UV method.  相似文献   

7.
A novel technique, "segmented post-column analyte addition", is proposed to visualize and compensate signal suppression/enhancement effects in electrospray ionization tandem mass spectrometry (ESI-MS/MS). Instead of delivering a constant flow of analyte solution between the liquid chromatography (LC) column exit and the ESI interface into the eluent resulting from LC separation of analyte-free matrix in order to determine retention time widows in which suppression/enhancement is unimportant (King et al., J. Am. Soc. Mass Spectrom. 2000; 11: 942), segmented packets of analyte-containing solvent and analyte-free solvent were infused into an LC eluent resulting from separation of an analyte-containing sample. The obtained, superimposed, periodic spikes are much narrower than the analyte peak eluting from the column. The height of the spikes is affected by signal suppression phenomena to the same extent as the analyte signal, and hence variations of the spike height can be used to correct the peak area of analyte peaks affected by signal suppression/enhancement.  相似文献   

8.
Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high‐precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment δ13C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline‐resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed‐mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed‐mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed‐mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a practical guide for the development of new chromatographic methods compatible with LC/IRMS applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid, sensitive and selective LC‐MS/MS method for the quantitative analysis of 3‐hydroxy pterocarpan (S006‐1709) in female rat plasma has been developed and validated. A Discovery RP18 column was used for the chromatographic elution using acetonitrile and 0.1% acetic acid in water as mobile phase (80:20 v/v) at the flow rate of 0.5 mL/min. MS/MS analysis was performed using a triple quadrupole mass spectrometer with electrospray ionization in negative ion mode using biochanin as an internal standard (IS). Extraction of S006‐1709 and IS from rat plasma was done by liquid–liquid extraction method using diethyl ether. The LC‐MS/MS method was sensitive with 1.95 ng/mL as the limit of detection and 3.9 ng/mL as the lower limit of quantification. The method was linear in the concentration range of 3.9–1000 ng/mL. The percentage bias for intraday and interday accuracy was not greater than 4.2 and the %RSD for intraday and interday precision was not greater than 13.2. The recoveries of S006‐1709 and IS were 73.9–79.3 and 85.7%, respectively. S006‐1709 was found to be stable in various stability studies. The validated LC‐MS/MS method was successfully applied for the oral pharmacokinetics study of S006‐1709 at 10 mg/kg in female Sprague–Dawley rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Bioanalytical methods using automated 96-well solid-phase extraction (SPE) and liquid chromatography with electrospray tandem mass spectrometry (LC/MS/MS) are widely used in the pharmaceutical industry. SPE methods typically require manual steps of drying of the eluates and reconstituting of the analytes with a suitable injection solvent possessing elution strength weaker than the mobile phase. In this study, we demonstrated a novel approach of eliminating these two steps in 96-well SPE by using normal-phase LC/MS/MS methods with low aqueous/high organic mobile phases, which consisted of 70-95% organic solvent, 5-30% water, and small amount of volatile acid or buffer. While the commonly used SPE elution solvents (i.e. acetonitrile and methanol) have stronger elution strength than a mobile phase on reversed-phase chromatography, they are weaker elution solvents than a mobile phase for normal-phase LC/MS/MS and therefore can be injected directly. Analytical methods for a range of polar pharmaceutical compounds, namely, omeprazole, metoprolol, fexofenadine, pseudoephedrine as well as rifampin and its metabolite 25-desacetyl-rifampin, in biological fluids, were developed and optimized based on the foregoing principles. As a result of the time saving, a batch of 96 samples could be processed in one hour. These bioanalytical LC/MS/MS methods were validated according to "Guidance for Industry - Bioanalytical Method Validation" recommended by the Food and Drug Administration (FDA) of the United States.  相似文献   

11.
A simple and specific method using reversed‐phase liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) was investigated, which allowed the determination of residues of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in soybean samples. An aqueous extraction with liquid‐liquid partition followed by protein precipitation was performed before the LC/MS/MS determination. The quantitation of glyphosate and AMPA was performed in positive and negative ESI mode, respectively, using the multiple reaction monitoring (MRM) mode with three transitions for each analyte to enhance the specificity of the method and avoid false positives. The methodology reported in this work is capable of detecting residues of glyphosate and AMPA in soybean samples with limits of quantification of 0.30 and 0.34 mg kg?1, respectively. This alternative method has throughput advantages such as simpler sample preparation and faster chromatographic analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A simple and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the simultaneous determination of JBP485, Gly–Sar and JBP923 in the cell lysates using methanol as a deproteinization solvent was developed and validated. Detection was performed by turbo ionspray ionization in multiple reaction monitoring mode using the transitions of m/z 147.1 → m/z 90.1 for Gly–Sar, m/z 201.1 → m/z 86.1 for JBP485, m/z 219.1 → m/z 86.1 for JBP923 and m/z 152.0 → m/z 110.0 for paracetamol (internal standard). The analytes were separated on a Hypersil ODS C18 HPLC column using isocratic elution mode with a mobile phase containing 0.1% formic acid in water–methanol (97:3, v/v) at a flow rate of 0.2 mL/min. The calibration curves were demonstrated to be linear over the concentration range of 5.00?5000 nm with coefficient of 0.9968 for Gly–Sar, 0.9975 for JBP485 and 0.9952 for JBP923. The intra‐ and inter‐day precisions were <10.2% for each quality contro; level, and the accuracy was within ±5.6% for each analyte. The matrix effect, the extraction recovery and stabilities of LC‐MS/MS analysis were also investigated. This validated method was successfully applied to the simultaneous determination of JBP485, Gly–Sar and JBP923 in the cell lysates for identification of stably transfected HeLa cells with human PEPT1. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Dihydrostreptomycin sulphate (DHS) is a water‐soluble, broad‐spectrum aminoglycoside antibiotic. For quantitative analysis, the European Pharmacopoeia (Ph. Eur.) prescribes an ion‐pairing liquid chromatography/ultraviolet (LC/UV) method using a C18 stationary phase. Several unknown compounds were detected in commercial samples. Hence, for characterization of these unknown peaks in a commercial DHS sample, the Ph. Eur. method was coupled to mass spectrometry (MS). However, since the Ph. Eur. method uses a non‐volatile mobile phase, each peak eluted was collected and desalted before introduction into the mass spectrometer. The desalting procedure was applied to remove the non volatile salt, buffer and ion‐pairing reagent in the collected fraction. In total, 20 impurities were studied and 14 of them were newly characterized. Five impurities which are already reported in the literature were also traced in this LC/UV method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This study describes a comparison between LC‐UV and LC–MS method for the simultaneous analyses of a few disease‐modifying agents of multiple sclerosis. Quantitative determination of fampridine (FAM), teriflunomide (TFM) and dimethyl fumarate (DMF) was performed in human plasma with the recovery values in the range of 85–115%. A reversed‐phase high‐performance liquid chromatography (HPLC) with UV as well as MS detection is used. The method utilizes an XBridge C18 silica column and a gradient elution with mobile phase consisting of ammonium formate and acetonitrile at a flow rate of 0.5 mL min?1. The method adequately resolves FAM, TFM and DMF within a run time of 15 min. Owing to low molecular weights, the estimation of DMF and FAM is more versatile in UV than MS detection. With LC‐UV, the detection limits of FAM, TFM and DMF were 0.1, 0.05, 0.05 μg and the quantification limit for all the analytes was 1 μg. With LC–MS, the detection and quantification limits for all of the analytes were 1 and 5 ng, respectively. The two techniques were completely validated and shown to be reproducible and sensitive. They were applied to a pharmacokinetic study in rats by a single oral dose. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Analyte solvent and injection volume were examined as parameters that affect peak elution during method development for semipreparative RP HPLC purification. Analytical and semipreparative scale HPLC with gradient elution were used to analyze a mixture of three standard compounds with significantly different retention factors (k). This mixture was analyzed after (i) dissolution in solvents of varied compositions, and (ii) with progressively larger injection volumes. As analyte solvent composition and injection volume were changed, the most notable effects on peak shape were observed for the compounds with the smallest k values. Overall changes in peak shape were less pronounced when analyte solvent composition was similar to the starting mobile phase regardless of injection volume. Scale-up to semipreparative conditions yielded results consistent with those observed at the analytical scale. These data show that peak shape is greatly affected by analyte solvent composition and injection volume, and that these effects can be ameliorated by the dissolution of analytes in solvent that closely resembles that of the mobile phase used for initial run conditions. The following study addresses the concepts of peak elution in RP HPLC and how they factor into semipreparative purification.  相似文献   

16.
A liquid chromatography/tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determining tacrolimus (FK506) in rat tissues to study the effect of Schisandra sphenanthera extract on FK506 tissue distribution. After a liquid–liquid extraction with ethyl acetate, FK506 and ascomycin (IS) were subjected to LC‐MS/MS analysis using positive electrospray ionization under multiple reactions monitoring mode. Chromatographic separation of FK506 and ascomycin was achieved on a Hypersil BDS C18 column with a mobile phase consisting of methanol‐water (containing 2 mM ammonium acetate, 95 : 5, v/v). The intra‐ and inter‐batch precision of the method were less than 8.8 and 9.8%, respectively. The intra‐ and inter‐batch accuracies ranged from 97.5 to 104.0%. The lowest limit of quantification for FK506 was 0.5 ng/mL. The method was applied to a FK506 tissue distribution study with or without a dose of Wuzhi (WZ) tablet. Most of the FK506 tissue concentrations were slightly increased after a concomitant WZ tablet dose, but the whole blood concentration of FK506 was dramatically increased 3‐fold after a concomitant WZ tablet dose. These results indicated that the LC‐MS/MS method was rapid and sensitive enough to quantify FK506 in different rat tissues, and strict drug monitoring is recommended when co‐administering WZ tablet in clinical use. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Ultra performance LC with quadrupole TOF MS (UPLC/Q‐TOF‐MS) fingerprinting is first developed for the identification of the major components of Phellodendri Amurensis Cortex (PAC). The PAC samples are separated using a Waters ACQUITY UPLC BEH C18 (2.1×50 mm, 1.7 μm) by linear gradient elution using water (containing 0.2% formic acid) and acetonitrile (containing 0.2% formic acid) as the mobile phase. Ten batches of PAC are selected to construct the UPLC/Q‐TOF‐MS fingerprint. Sixteen common peaks in the fingerprint are obtained, ten of which are tentatively identified, with reference to the literature data, as phellodendrine, magnoflorine, tetrahydropjatrorrhizine, menisperine, tetrahydropalmatine, jatrorrhizine, palmatine, berberine, obacunone, and limonin. Chemometric methods are also employed to evaluate the variation of herbal drugs and other closely related herbs based on the characteristics of peaks in the UPLC/Q‐TOF‐MS profiles. The developed fingerprint assay is a powerful method that may be used to conduct quality control of PAC.  相似文献   

18.
A simple, specific, and sensitive liquid chromatography–mass spectrometry (LC‐MS) method for determination of cyasterone in rat plasma was developed in our laboratory. Cucurbitacin B was used as an internal standard (IS). After protein precipitation with twofold volume of acetonitrile, the analyte and IS were separated on a Luna C18 column (100 × 4.6 mm, i.d., 3.0 µm; Phenomenex) by isocratic elution with acetonitrile–water (80:20, v/v) as the mobile phase at a flow rate of 0.4 mL/min. An electrospray ionization source was applied and operated in the positive ion mode; selected ion monitoring scan mode was used for quantification, and the target ions m/z 543.3 for cyasterone and m/z 581.3 for IS were chosen. Good linearity was observed in the concentration range of 0.40–400 ng/mL for cyasterone in rat plasma. Intra‐day and inter‐day precision were both <7.4%. This method was proved to be suitable for pharmacokinetic studies after oral (5.0 mg/kg) or intravenous (0.5 mg/kg) administration of cyasterone in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats.  相似文献   

20.
There is a growing interest in exploring the use of liquid chromatography coupled with full-scan high resolution accurate mass spectrometry (LC/HRMS) in bioanalytical laboratories as an alternative to the current practice of using LC coupled with tandem mass spectrometry (LC/MS/MS). Therefore, we have investigated the theoretical and practical aspects of LC/HRMS as it relates to the quantitation of drugs in plasma, which is the most commonly used matrix in pharmacokinetics studies. In order to assess the overall selectivity of HRMS, we evaluated the potential interferences from endogenous plasma components by analyzing acetonitrile-precipitated blank human plasma extract using an LC/HRMS system under chromatographic conditions typically used for LC/MS/MS bioanalysis with the acquisition of total ion chromatograms (TICs) using 10 k and 20 k resolving power in both profile and centroid modes. From each TIC, we generated extracted ion chromatograms (EICs) of the exact masses of the [M + H](+) ions of 153 model drugs using different mass extraction windows (MEWs) and determined the number of plasma endogenous peaks detected in each EIC. Fewer endogenous peaks are detected using higher resolving power, narrower MEW, and centroid mode. A 20 k resolving power can be considered adequate for the selective determination of drugs in plasma. To achieve desired analyte EIC selectivity and simultaneously avoid missing data points in the analyte EIC peak, the MEW used should not be too wide or too narrow and should be a small fraction of the full width at half maximum (FWHM) of the profile mass peak. It is recommended that the optimum MEW be established during method development under the specified chromatographic and sample preparation conditions. In general, the optimum MEW, typically ≤ ±20 ppm for 20 k resolving power, is smaller for the profile mode when compared with the centroid mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号