首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three poly(N‐vinylcarbazole) (PVK)‐based polymer electrets were synthesized through Friedel‐Crafts postfunctionalization for the function of charge storage in nonvolatile organic field effect transistor (OFET) memory devices. The bulky side chain effect of these stacked polymer electrets on the morphology, water contact angles, and memory characteristics were examined with regard to those of precursor PVK. The introduction of steric hindrance groups could interrupt the large length of π‐stacked structures in PVK and block the form of region‐regular structures from region‐random on external electric field. As a result, the memories based on the three modified polymers exhibited approximate memory windows of 32 V increased by 13 V with respect to PVK. Besides, the write‐read‐erase‐read cycles stability of the modified polymers was superior to that of PVK. Furthermore, we found that the holes were mainly located in the region of local π‐stacked structures and bulky π‐conjugated groups also acted as additional electron trapping sites. Molecular engineering of charge trapping site with tunneling polymers will be a promise strategy for the advance of transistor memory. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3554–3564  相似文献   

2.
This work aims at providing a complete analysis of the effect of plasticizers on the electrostrictive terpolymer performance. To achieve this, several plasticizing agents such as 2‐ethylhexyl phtalate (DEHP), diisononyl phtalate (DINP), and palamoll 652 have been incorporated in the polymer matrix. Experimental results demonstrate that the proposed novel materials exhibited excellent electromechanical enhancement in terms of transverse strain and mechanical energy density under a moderate electric field, which is definitively critical in recent microscale actuation. Another objective of this article was to explore material characteristics as a function of the DINP content, and it was found that the plasticizer weigh fraction was the key parameter determining performance of the modified fluorinate terpolymer blends. Accordingly, it was revealed that high performance flexible actuators can be achieved merely by employing a simple and cheap plasticizer, thus making it possible to overcome the current technological barrier of conventional electroactive polymers that suffer from the high applied electric field usually required to reach sufficient strain. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 355–369  相似文献   

3.
A key challenge to the development of polymer‐based organic solar cells is the issue of long‐term stability, which is mainly caused by the unstable time‐dependent morphology of active layers. In this study, poly(3‐hexylthiophene) (P3HT)/[6,6]‐phenyl C60‐butyric acid methyl ester (PCBM) blend is used as a model system to demonstrate that the long‐term stability of power conversion efficiency can be significantly improved by the addition of a small amount of amorphous regiorandom P3HT into semicrystalline regioregular one. The optical properties measured by UV–vis absorption and photoluminescence reveal that regiorandom P3HT can intimately mix with PCBM and prevent the segregation of PCBM. In addition, X‐ray scattering techniques were adopted to evidence the retardation of phase separation between P3HT and PCBM when regiorandom P3HT is added, which is further confirmed by optical microscopy that shows a reduction of large PCBM crystals after annealing at high temperature in the presence of regiorandom P3HT. The improvement of the long‐term stability is attributed to the capability of amorphous P3HT to be thermodynamically miscible with PCBM, which allows the active layer to form a more stable structure that evolves slower and hence decelerates the device decay. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 975–985  相似文献   

4.
Through time‐dependent gas transport properties, we have investigated the physical aging process of amorphous glassy polymer films made from a polynorbornene. By combining the concepts of free volume and the kinetic theory of glass stabilization, it was found that the time dependence of the gas permeability could be rationalized through the thickness dependence of the glass transition temperature. A mathematical relationship was developed that directly relates polymer physical aging (tracked by the gas permeability decay) and sample thickness. It was confirmed by permeation measurements with nitrogen and helium that the aging process is accelerated for thin glassy polymer films (about 8000 Å). The theoretical results show that accelerated aging for thin films compared to thick films can be qualitatively predicted, based on the decrease in the glass transition temperature when the film thickness decreases. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2239–2251, 1999  相似文献   

5.
Tetraphenylporphyrin‐end‐functionalized polycyclohexane (H2TPP‐PCHE) and its metal complexes (MTPP‐PCHE) were synthesized as the first successful example of porphyrin‐end‐functionalized transparent and stable polymers with a well‐controlled and defined polymer chain structure. Chloromethyl‐end‐functionalized poly(1,3‐cyclohexadiene) (CM‐PCHD) was synthesized as prerequisite prepolymer by the postpolymerization reaction of poly(1,3‐cyclohexadienyl)lithium and chloro(chloromethyl)dimethylsilane. CM‐end‐functionalized PCHE (CM‐PCHE) was prepared by the complete hydrogenation of CM‐PCHD with p‐toluenesulfonyl hydrazide. H2TPP was incorporated onto the polymer chain end by the addition of 5‐(4‐hydroxyphenyl)‐10,15,20‐triphenylporphyrin to CM‐PCHE. The complexation of H2TPP‐PCHE and Zn(OAc)2 (or PtCl2) yielded a zinc (or platinum) complex of H2TPP‐PCHE. H2TPP‐PCHE and MTPP‐PCHE were readily soluble in common organic solvents, and PCHE did not inhibit the optical properties of the H2TPP, ZnTPP, and PtTPP end groups. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Two low‐band gap polymer series based on benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and dithienylbenzothiadiazole, with different numbers of fluorine substituents on the 2,3,1‐benzothiadiazole unit, have been synthesized and explored in a comparative study of the photochemical stability and operational lifetime in flexible large area roll‐coated bulk heterojunction solar cells. The two polymer series have different side chains on the BDT unit, namely 2‐hexyldecyloxy (BDTHDO) ( P1–P3 ) or 2‐hexyldecylthiophene (BDTTHD) ( P4–P6 ). The photochemical stability clearly shows that the stability enhances along with the number of fluorine atoms incorporated on the polymer backbone. Fabrication of the polymer solar cells based on the materials was carried out in ambient atmosphere on a roll coating/printing machine employing flexible and indium‐tin‐oxide‐free plastic substrates. Solar cells based on the P4–P6 series showed the best performance, reaching efficiencies up to 3.8% for an active area of 1 cm2, due to an enhanced current compared to P1–P3 . Lifetime measurements, carried out according to international summit on OPV stability (ISOS), of encapsulated devices reveals an initial fast decay for P1–P6 in the performance followed by a much slower decay rate, still retaining 40–55% of their initial performance after 250 h of testing under ISOS‐L‐1 conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 893–899  相似文献   

7.
This article presents experimental results and model predictions of the mechanical response of polymers during nonisothermal physical aging. The nonisothermal temperature history leads to a complex evolution in the aging behavior of the material. To characterize this response, sequential creep tests of polyether‐ether‐ketone (PEEK) and polyphenylene sulfide (PPS) films are performed at various aging times using a dynamic mechanical analyzer. The resulting strain histories are analyzed to determine discrete aging shift factors (ate) for each of the creep tests. The nonisothermal aging response is then predicted using the KAHR‐ate model, which combines the KAHR model of volume recovery with a suitable linear relationship between aging shift factors and specific volume. The KAHR‐ate model can be utilized to both predict aging response or to determine necessary model parameters from a set of aging shift factor data. For the PEEK and PPS materials considered in the current study, predictions of mechanical response are demonstrated to be in good agreement with the experimental results for several thermal histories. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 340–352, 2009  相似文献   

8.
We use existing scaling theories by de Gennes, Brochard, and Ajdari to calculate the apparent viscosity of multilayer blends with weakly entangled interfaces. The lowering of the apparent viscosity with respect to the bulk is a manifestation of interfacial slip. The theoretical predictions are compared with the recent experimental data of Zhao and Macosko. The theory is able to describe a continuous transition from a low-slip regime to a high-slip regime when the bulk rheology is still Newtonian, in agreement with experiments. However, the dependence of the apparent viscosity on the shear rate and layer thicknesses is much stronger than what is observed experimentally. The apparent viscosity is also calculated for dilute polymer emulsions. We modify a theory of Palierne, which is valid in the linear viscoelastic regime for the bulk, to include the effects of interfacial slip. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1888–1904, 2004  相似文献   

9.
Porphyrin, despite chosen by Nature as light harvesting units, hasn't revealed its full potentials as a structural unit in porphyrin‐incorporated polymers (PPors). A novel PPor was synthesized to investigate the origins of the low performances of PPor‐based polymer solar cells (PSCs). The polymer features broad absorption in the blue‐light region, because the diindenothieno[2,3‐b]thiophene (DITT) unit extended the conjugation in the polymer backbone. PPor‐DITT/PC71BM based PSCs have a high Voc (0.79 V). Their low Jsc and fill factor (FF) were attributed to the un‐optimized morphology, as indicated by the photoluminescence quenching and atomic force microscopy (AFM) experiments. Using PPor‐DITT as a blue‐light harvesting dopant in an amorphous host leverage the strong 400–550 nm absorption of PPor‐DITT and circumvent the difficulties in reaching optimized morphology in the PPor/PCBM thin films. An addition of 2 wt % of PPor‐DITT in ternary‐blend PSCs resulted in a 10 % increase of external quantum efficiency (EQE) in the blue‐light region. However, in a crystalline host, the dopant decreased the crystallinity of the host and led to large drops in FF and power conversion efficiencies (PCEs). The study provides an alternative route and expands the application of PPors in PSCs as a blue‐light harvester in ternary‐blend PSCs using amorphous polymers as host. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The functional polyimide (OMe)2TPPA‐6FPI ( PI ) and the polyamide (OMe)2TPPA‐6FPA ( PA ) consisting of electron‐donating N,N′‐bis(4‐aminophenyl)‐N,N′‐di(4‐methoxylphenyl)1,4‐phenylenediamine [(OMe)2TPPA‐diamine] for memory application were prepared in this study. These polyimide and polyamide memory devices were fabricated with the sandwich configuration of indium tin oxide (ITO)/polymer/Al, and could be switched from the initial low‐conductivity (OFF) state to the high‐conductivity (ON) state with high ON/OFF current ratios of 107 and 109, respectively. PI exhibited dynamic random access memory (DRAM) performance, whereas PA showed static random access memory (SRAM) behavior. To get more insight into the memory behaviors of these two different types of polymer memory devices, molecular simulation on the basic unit was carried out. Furthermore, the differences of highest occupied molecular orbital (HOMO) energy level, lowest unoccupied molecular orbital (LUMO) charge density isosurfaces, dipole moment, and linkage conformation between PI and PA were found to affect the volatile memory behavior. Both polymer memory devices revealed excellent stability with long operation time of 104 s at continuous applied voltage of ‐2 V. The effect of polymer thickness on the volatile memory behavior of PA was also investigated in this study. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
The physical aging properties of amorphous thermoplastics having various terminal groups were investigated with creep recovery and linear dilatometry. The structure of the chain end groups affected physical aging at lower molecular weights; however, above the critical molecular weight for entanglements the end‐group effect on aging diminished. Experimental densities and glass‐transition temperatures were also end‐group dependent. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2850–2860, 2003  相似文献   

12.
Nanostructured amorphous bulk polymer samples were produced by processing them with small molecule hosts. Urea (U) and gamma‐cyclodextrin (γ‐CD) were utilized to form crystalline inclusion compounds (ICs) with low and high molecular weight as‐received (asr‐) poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), and their blends as included guests. Upon careful removal of the host crystalline U and γ‐CD lattices, nanostructured coalesced (c‐) bulk PVAc, PMMA, and PVAc/PMMA blend samples were obtained, and their glass‐transition temperatures, Tgs, measured. In addition, non‐stoichiometric (n‐s)‐IC samples of each were formed with γ‐CD as the host. The Tgs of the un‐threaded, un‐included portions of their chains were observed as a function of their degree of inclusion. In all the cases, these nanostructured PVAc and PMMA samples exhibited Tgs elevated above those of their as‐received and solution‐cast samples. Based on their comparison, several conclusions were reached concerning how their molecular weights, the organization of chains in their coalesced samples, and the degree of constraint experienced by un‐included portions of their chains in (n‐s)‐γ‐CD‐IC samples with different stoichiometries affect their chain mobilities and resultant Tgs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1041–1050  相似文献   

13.
The solar cell performance and microstructure of DPP‐based polymers with different degrees of fluorination are reported. DPP‐based polymers with thiophene–phenyl–thiophene comonomer and thiophene flanking units are studied, with the degree of fluorination of the phenyl unit varied. With bifluorination of the phenyl ring, a higher open circuit voltage is achieved whilst maintaining or even improving the overall solar cell efficiency. While tetrafluorination leads to a further 0.1 V increase in VOC, reaching a high photo voltage of 0.81 V, overall solar cell performance significantly drops. Microstructural studies using AFM, TEM, Grazing incidence wide‐angle X‐ray scattering (GIWAXS), and Resonant soft X‐ray scattering (R‐SoXS) reveal that bifluorination largely preserves the microstructure of the nonfluorinated system, whereas tetrafluorination results in coarse phase separation between the polymer donor and the fullerene acceptor. Our results demonstrate that the use of an extended comonomer is a promising strategy for optimizing the beneficial effects of fluorination for DPP‐based polymer solar cells, especially in improving the open circuit voltage. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 49–59  相似文献   

14.
Pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione (DPPD)‐based large band gap polymers, P(BDT‐TDPPDT) and P(BDTT‐TDPPDT), are prepared by copolymerizing electron‐rich 4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene (BDT) or 4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) unit with novel electron deficient 2,5‐dioctyl‐4,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione (TDPPDT) unit. The absorption bands of polymers P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) cover the region from 300 to 600 nm with an optical band gap of 2.11 eV and 2.04 eV, respectively. The electrochemical study illustrates that the highest occupied/lowest unoccupied molecular orbital energy levels of P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) are ?5.39 eV/?3.28 eV and ?5.44 eV/?3.40 eV, respectively. The single layer polymer solar cell (PSC) fabricated with a device structure of ITO/PEDOT:PSS/P(BDT‐TDPPDT) or P(BDTT‐TDPPDT):PC70BM+DIO/Al offers a maximum power conversion efficiency (PCE) of 6.74% and 6.57%, respectively. The high photovoltaic parameters such as fill factor (~72%), open circuit voltage (Voc, ~0.90 V), incident photon to collected electron efficiency (~76%), and PCE obtained for the PSCs made from polymers P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) make them as promising large band gap polymeric candidates for PSC application. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3564–3574  相似文献   

15.
The phase‐separation kinetics of liquid‐crystalline polymer/flexible polymer blends was studied by the coupled time‐dependent Ginzberg–Landau equations for compositional order parameter ? and orientational order parameter Sij. The computer simulations of phase‐separated structures of the blends were performed by means of the cell dynamical system in two dimensions. The compositional ordering processes of phase separation are demonstrated by the time evolution of ?. The influence of orientational ordering on compositional ordering is discussed. The small‐angle light scattering patterns are numerically reproduced by means of the optical Fourier transformation of spatial variation of the polarizability tensor αij, and the azimuthal dependence of the scattering intensity distribution is interpreted. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2915–2921, 2001  相似文献   

16.
Existing studies in the research literature showing conflicting changes in physical aging rates with decreasing film thickness in nanoconfined polymer films highlight the need for a single experimental technique to efficiently characterize physical aging rates in thin polymer films of varying chemical structure. To that end, we have developed a streamlined ellipsometry procedure to measure the structural relaxation of thin glassy polymer films. We evaluate different methods of calculating a physical aging rate β from the measured thickness h(t) and index of refraction n(t) data. We present extensive measurements of β as a function of aging temperature and aging time for polystyrene (PS) films supported on silicon, and determine that the physical aging rate β can be easily and reliably determined from β = −1/h0 dh/d(log t), where h0 is the initial measure of the film thickness at an aging time of 10 min. We have also carried out oxygen permeation studies on poly(methyl methacrylate) (PMMA) films from 800 μm down to 190 nm in thickness, and find no change in the permeability with film thickness or physical aging at room temperature for up to 65 days, which suggests that gas permeation may be insensitive to physical aging in such low free volume polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2509–2519, 2009  相似文献   

17.
The influence of the microstructure on the oxidation of poly(1,3‐cyclohexadiene) (PCHD) homopolymer, obtained by anionic polymerization with alkyllithium/amine systems, was investigated for the first time. PCHD has a structure consisting of a main chain formed by 1,2‐addition (the 1,2‐CHD unit) and 1,4‐addition (the 1,4‐CHD unit). The molar ratio of 1,2‐CHD/1,4‐CHD units in the polymer chain strongly influenced the extent of oxidation of PCHD. A polymer chain with a high content of 1,4‐CHD units was easily oxidized by air and 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ). In contrast, the progress of oxidation was prevented in the case of PCHD containing 52% of 1,2‐CHD units. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 837–845, 2006  相似文献   

18.
This study focuses on the prediction of long‐term failure of glassy polymers under static or cyclic loading conditions, including the role of stress‐accelerated progressive aging. Progressive physical aging plays a dominant role in a polymer's performance under prolonged loading conditions, and to obtain accurate predictions of failure, its effect has to be considered. First, the aging kinetics, as influenced by temperature and stress history, are studied extensively. Similar to an elevated temperature, the application of a stress (below the yield stress) activates the aging process, and as a result, the yield stress will evolve faster in time. The activation by stress appears to be limited; at some stress level, the activation stagnates and is followed by rejuvenation. This evolution is captured in a model by introducing a state parameter, which describes the thermodynamic state of the material and is directly linked to the yield stress. With the aging kinetics included in the model, an accurate prediction of the failure time for cyclic loading conditions is obtained. For static loading conditions, however, the effect of physical aging is overestimated because of the stagnation of the activation by stress. It appears that there are marked differences in the stress level where stagnation and subsequent rejuvenation occur for a cyclic or static load. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1300–1314  相似文献   

19.
Four polythiophene derivatives including regiorandom polymers P1 , P2 , and P3 and a regioregular polymer P4 , containing a phenyl side chain with electron‐withdrawing carbonyl groups such as an ester and a ketone at the 3‐position of the thiophene ring, were synthesized by Stille coupling reaction. Bulk‐heterojunction polymer solar cells (PSCs) based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) were fabricated, and their photovoltaic performances were evaluated for the first time. The PSC devices based on the regioregular polymer P4 :PCBM = 1:2 (w/w) exhibited a high‐open‐circuit voltage (Voc) of 0.943 V because of the low‐lying highest occupied molecular orbit energy level of P4 . The short π–π stacking distance (0.355 nm) in the parallel direction to the substrate and “face‐on” rich orientation were observed by the grazing incidence wide‐angle X‐ray scattering experiment, which might reflect higher Jsc and FF values of the P4 :[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) PSC device than others. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 875–887  相似文献   

20.
Kinetic decomposition models for the thermal decomposition of a high‐performance polymeric material (Polyimide, PI) were determined from specific techniques. Experimental data from thermogravimetric analysis (TGA) and previously elucidated decomposition mechanism were combined with numerical simulating tool to establish a comprehensive kinetic model for the decomposition of PI under three atmospheres: nitrogen, 2% oxygen, and synthetic air. Multistaged kinetic models with subsequent and competitive reactions were established by taking into consideration the different types of reactions that may be occurring during the thermal decomposition of the material (chain scission, thermo‐oxidation, char formation). The decomposition products and decomposition mechanism of PI which was established in our previous report allowed for the elucidation of the kinetic decomposition models. A three‐staged kinetic thermal decomposition pathway was a good fit to model the thermal decomposition of PI under nitrogen. The kinetic model involved an autocatalytic type of reaction followed by successive nth order reactions. Such types of models were set up for the evaluation of the kinetics of the thermal decomposition of PI under 2% oxygen and in air, leading to models with satisfactory fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号