首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of nonempirical and the density functional methods the geometrical parameters, the enthalpies of formation of the compounds and radicals, and the dissociation energies of the N-NO2 bond in primary and secondary N-nitramines were evaluated. The tendencies to the variation of spatial arrangement, of the formation enthalpies, and of the dissociation energies in the series of simplest N-nitramines were analyzed. Alternative mechanisms of the initial stage of the gas phase unimolecular decomposition were considered. It is noted that among all the processes of unimolecular decomposition the formation and destruction of aci-form according to the complex multy-stage mechanism was the most energetically favored.  相似文献   

2.
Nonempirical and density-functional methods were used to determine geometric parameters, enthalpies of formation of compounds and radicals, dissociation energies of the N-NO2 bonds of primary N-nitramines and N,N-dinitramines. The tendencies toward variation of the geometric structure, enthalpies of formation, and dissociation energy in the series of primary N-nitramines were analyzed. Alternative mechanisms of the gas-phase thermal destruction to give experimentally observed reaction products were studied for the example of N-methylnitramine and its homologues.  相似文献   

3.
The equilibrium geometrical parameters, enthalpies of the formation of compounds and radicals, and the dissociation energies of the O–NO2 bond for nitroesters of mono- and polyatomic aliphatic alcohols have been determined by the density functional B3LYP method. The basic tendencies in the changes of parameters of the geometrical and electronic structure of molecules, enthalpies of the formation and dissociation energies have been analyzed. Various mechanisms of the initial event of the gas-phase decomposition of nitroesters of mono- and polyatomic aliphatic alcohols have been studied.  相似文献   

4.
运用密度泛函理论和半经验分子轨道方法,对一系列高能杂环硝胺—反式-1,4,5,8-四硝基-1,4,5,8-四氮杂萘烷异构体的热解机理和稳定性进行了系统地计算研究。在B3LYP/6-31G**和PM3水平上,分别计算了标题物的化学键离解能(BDE)和热解反应活化能(Ea),并根据BDE和Ea数值考察了硝胺取代基对化合物稳定性和热解机理的影响;同时,还详细考察了BDE与Ea、化学键重叠布居数、前线轨道能级以及能隙之间的相关性。结果表明,由BDE、Ea和静态电子结构参数推断的标题物热稳定性和热解机理的结论基本是一致的,N-NO2键均裂是标题物的热解引发步骤,间位取代异构体较对位取代异构体稳定,而邻位取代的异构体稳定性最差。  相似文献   

5.
The enthalpies of formation in the standard state and in the gas phase were recommended for a series of secondary nitramines and n-butyldinitramine on the basis of the experimental enthalpies of combustion and vaporization and literature data. An analysis of the main thermochemical values (the enthalpies of formation in the gas phase and the enthalpies of atomization) showed that the energy properties of the nitramine group are independent of the structure of the molecules studied and of the number of functional groups in them. The enthalpies of formation of the alkylnitramine radicals were determined. The values obtained make it possible to calculate the bond dissociation energies in the nitramines and their radicals of different structures.  相似文献   

6.
Ab initio and DFT thermochemical study of diradical mechanism of 2 + 2 cycloreversion of parent heterocyclobutanes and 1,3‐diheterocyclobutanes, cyclo‐(CH2CH2CH2X), and cyclo‐(CH2XCH2X), where X = NH, O, SiH2, PH, S, was undertaken by calculating closed‐shell singlet molecules at three levels of theory: MP4/6‐311G(d)//MP2/6‐31G(d)+ZPE, MP4/6‐311G(d,p)//MP2/6‐31G (d,p)+ZPE, and B3LYP/6‐311+G(d,p)+ZPE. The enthalpies of 2 + 2 cycloreversion decrease on going from group 14 to group 16 elements, being substantially higher for the second row elements. Normally endothermic 2 + 2 cycloreversion is predicted to be exothermic for 1,3‐diazetidine and 1,3‐dioxtane. Strain energies of the four‐membered rings were calculated via the appropriate homodesmic reactions. The enthalpies of ring opening via the every possible one‐bond homolysis that results in the formation of the corresponding 1,4‐diradical were found by subtracting the strain energies from the central bond dissociation energies of the heterobutanes CH3CH2—CH2XH, CH3CH2—XCH3, and HXCH2—XCH3. The latter energies were determined via the enthalpies of the appropriate dehydrocondensation reactions, using C—H and X—H bond energies in CH3XH calculated at G2 level of theory. Except 1,3‐disiletane, in which ring‐opening enthalpy attains 69.7 kcal/mol, the enthalpies of the most economical ring openings do not exceed 60.7 kcal/mol. The 1,4‐diradical decomposition enthalpies found as differences between 2 + 2 cycloreversion and ring‐opening enthalpies were negative, the least exothermicity was calculated for ⋅ CH2SiH2CH2CH2. The only exception was 1,3‐disiletane, which being diradical, CH2SiH2CH2SiH2, decomposed endothermically. Since decomposition of the diradical containing two silicon atoms required extra energy, raising the enthalpy of the overall reaction to 78.9 kcal/mol, 1,3‐disiletane was predicted to be highly resisting to 2 + 2 cycloreversion. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:704–720, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20377  相似文献   

7.
The standard ( = 0.1 MPa) energies of combustion in oxygen, at T = 298.15 K, for the solid compounds 2-methylpyridine-N-oxide (2-MePyNO), 3-methylpyridine-N-oxide (3-MePyNO) and 3,5-dimethylpyridine-N-oxide (3,5-DMePyNO) were measured by static-bomb calorimetry, from which the respective standard molar enthalpies of formation in the condensed phase were derived. The standard molar enthalpies of sublimation, at the same temperature, were measured by Calvet microcalorimetry. From the standard molar enthalpy of formation in gaseous phase, the molar dissociation enthalpies of the N–O bonds were derived, and compared with values of the dissociation enthalpies of other N–O bonds available for other pyridine-N-oxide derivatives.  相似文献   

8.
Thermal decomposition of four tertiary N‐(2‐methylpropyl)‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl)‐N‐oxyl (SG1)‐based alkoxyamines (SG1‐C(Me)2‐C(O)‐OR, R = Me, tBu, Et, H) has been studied at different experimental conditions using 1H and 31P NMR spectroscopies. This experiment represents the initiating step of methyl methacrylate polymerization. It has been shown that H‐transfer reaction occurs during the decomposition of three alkoxyamines in highly degassed solution, whereas no products of H‐transfer are detected during decomposition of SG1‐MAMA alkoxyamine. The value of the rate constant of H‐transfer for alkoxyamines 1 (SG1‐C(Me)2‐C(O)‐OMe) and 2 ( SG1‐C(Me)2‐C(O)‐OtBu) has been estimated as 1.7 × 103 M?1s?1. The high influence of oxygen on decomposition mechanism is found. In particular, in poorly degassed solutions, nearly quantitative formation of oxidation product has been observed, whereas at residual pressure of 10?5 mbar, the main products originate from H‐atom transfer reaction. The acidity of the reaction medium affects the decomposition mechanism suppressing the H‐atom transfer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
The synthesis and characterisation of a series of new Rh and Au complexes bearing 1,2,4‐triazol‐3‐ylidenes with a N‐2,4‐dinitrophenyl (N‐DNP) substituent are described. IR, NMR, single‐crystal X‐ray diffraction and computational analyses of the Rh complexes revealed that the N‐heterocyclic carbenes (NHCs) behaved as strong π acceptors and weak σ donors. In particular, a natural bond orbital (NBO) analysis revealed that the contributions of the Rh→Ccarbene π backbonding interaction energies (ΔEbb) to the bond dissociation energies (BDE) of the Rh? Ccarbene bond for [RhCl(NHC)(cod)] (cod=1,5‐cyclooctadiene) reached up to 63 %. The Au complex exhibited superior catalytic activity in the intermolecular hydroalkoxylation of cyclohexene with 2‐methoxyethanol. The NBO analysis suggested that the high catalytic activity of the AuI complex resulted from the enhanced π acidity of the Au atom.  相似文献   

10.
The title compound (systematic name: 4,10‐di­nitro‐2,6,8,12‐tetraoxa‐4,10‐di­aza­tetra­cyclo­[5.5.0.03,11.05,9]­do­decane), C6H6N4O8, exhibits the highest density among known N‐nitramines, due to its close‐packed crystal structure. It may be regarded as consisting of a distorted hexagonal close‐packed lattice formed by the isowurtzitane cages, with the nitro groups occupying the free space between the cages.  相似文献   

11.
Twelve compounds unknown in the literature N‐(E)‐2‐stilbenyloxymethylenecarbonyl substituted hydrazones of 2‐, 3‐ and 4‐pyridinecarboxaldehydes, as well as methyl‐3‐pyridylketone have been prepared. The stereochemical behavior of these compounds in dimethyl‐d6 sulfoxide solution has been studied by 1H NMR technique. The E geometrical isomers and cis/trans amide conformers have been found for N‐substituted hydrazones 1–12. EI induced mass spectral fragmentation of these compounds were also investigated. The data obtained create the basis for distinguishing isomers.  相似文献   

12.
Based on the experimentally determined values and published data, the enthalpies of formation of nitroalkanes C4–C7 in the standard state and in the gas phase were recommended. The dissociation energies of bonds in these compounds were determined taking into account the enthalpies of atomization and the energies of nonvalent interactions of nitro groups with one another. The calculated values were compared with the available thermal decomposition kinetic data. The dissociation energies of bonds in C4–C7 nitroalkane radicals were also calculated using the enthalpies of atomization and the energies of nonvalent interactions of nitro groups. Regularities of changes in the bond dissociation energies of nitroalkanes C1–C7 and their radicals are established.  相似文献   

13.
The relationships among geometrical parameters, estimated binding energies, and nuclear magnetic resonance data in –C?O···H? O? intramolecular H‐bond of some substituted 2‐hydroxybenzaldehyde have theoretically been studied by B3LYP and MP2 methods with 6‐311++G** and AUG‐cc‐PVTZ basis sets. All substituents increase estimated hydrogen bond energies EHBs (with the exception of NO2 and C2H5), which are in good correlation with geometrical parameters, topological properties of electron density calculated at O···H bond critical points and ring critical points by using atoms in molecules method, the results of natural bond orbital analysis, and calculated nuclear magnetic resonance data. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

14.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

15.
Interactions between noble metals and rare gases have become an interesting topic over the last few years. In this work, a computational study of the open‐shell (d10s1) and closed‐shell (d10s and d10s2) noble metals (M = Cu, Ag, and Au) with three heaviest rare gas atoms (Rg = Kr, Xe, and Rn) has been performed. Potential energy curves based on ab initio [MP2, MP4, QCISD, and CCSD(T)] and DFT functionals (M06‐2X and CAM‐B3LYP) were obtained for ionic and neutral AuXe complexes. Dissociation energies indicate that neutral metals have the lowest and cationic metals have the highest affinities for interaction with rare gas atoms. For the same metals, there is a continuous increase in dissociation energies (De) from Kr to Rn. The nature of bonding and the trend of De and equilibrium bond lengths (Re) have been interpreted by means of quantum theory of atoms in molecules, natural bond orbital, and energy decomposition analysis. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
One‐ and two‐dimensional (1‐D and 2‐D) helium lattices have been studied using ab initio RHF/6–31G** computations. Structural, physical and thermochemical properties have been calculated and analyzed for the 1‐D and 2‐D HeN lattices respectively up to N = 50 and N = 36. Asymptotic properties of the 1‐D HeN lattices are obtained by extrapolating N‐dependence properties to large values of N. Analysis of the results show that the bulk per‐atom interaction (binding) energies increase while the optimized interatomic distances (bond lengths) slightly decrease with the increase in size of the 1‐D HeN lattices and both reach their asymptotic values of 0.352 cm?1 and 3.18775 Å, respectively. Between the square and hexagonal (packed) structures of the 2‐D HeN lattices, the latter is more favored. Extrapolated values of the calculated properties, including lattice parameter, binding and zero point energies, heat capacity, and entropy have also been calculated for both 1‐D and 2‐D HeN lattices. The surface densities for monolayer films of helium atoms with square and hexagonal configurations have been calculated to be respectively 9.84 × 1018 and 1.04 × 1019 helium atoms/cm2 which are comparable to the experimental value of 2.4 × 1019 helium atom/m2 well within the typical large and directional error bars of the experiments. Surface effects have been investigated by comparing the packed HeN2‐D lattices with the same value of N but with different geometries (arrangements). This comparison showed that the HeN lattices prefer arrangements with the smallest surface area.  相似文献   

17.
杨旭武  陈三平  高胜利  史启祯 《中国化学》2002,20(10):1000-1006
IntroductionGTF ,theindispensablecofactorofinsulin ,isacomplexformedbetweenaminoacid ,niacinandchromi um .Insulindoesnotkeepthenormalsugarmetabolicun lessGTFhasaffinityforitscomplex .1Thus ,itisdesir abletohaveagoodunderstandingofcoordinationbehaviorofchromi…  相似文献   

18.
Being a close analogue of amflutizole, methyl 4‐amino‐3‐phenylisothiazole‐5‐carboxylate (C11H10N2O2S) was assumed to be capable of forming polymorphic structures. Noncentrosymmetric and centrosymmetric polymorphs have been obtained by crystallization from a series of more volatile solvents and from denser tetrachloromethane, respectively. Identical conformations of the molecule are found in both structures. The two polymorphs differ mainly in the intermolecular interactions formed by the amino group and in the type of stacking interactions between the π‐systems. The most effective method for revealing packing motifs in structures with intermolecular interactions of different types (hydrogen bonding, stacking, dispersion, etc.) is to study the pairwise interaction energies using quantum chemical calculations. Molecules form a column as the primary basic structural motif due to stacking interactions in both polymorphic structures under study. The character of a column (straight or zigzag) is determined by the orientations of the stacked molecules (in a `head‐to‐head' or `head‐to‐tail' manner). Columns bound by intermolecular N—H…O and N—H…N hydrogen bonds form a double column as the main structural motif in the noncentrosymmetric structure. Double columns in the noncentrosymmetric structure and columns in the centrosymmetric structure interact strongly within the ab crystallographic plane, forming a layer as a secondary basic structural motif. The noncentrosymmetric structure has a lower density and a lower (by 0.59 kJ mol?1) lattice energy, calculated using periodic calculations, compared to the centrosymmetric structure.  相似文献   

19.
The polymorphic study of 3‐(3‐phenyl‐1H‐1,2,4‐triazol‐5‐yl)‐2H‐1‐benzopyran‐2‐one, C17H11N3O2, was performed due to its potential biological activity and revealed three polymorphic modifications in the triclinic space group P, the monoclinic space group P21 and the orthorhombic space group Pbca. These polymorphs have a one‐column layered type of crystal organization. The strongest interactions between the molecules of the studied structures is stacking between π‐systems, while N—H…N and C—H…O hydrogen bonds link stacked columns forming layers as a secondary basic structural motif. C—H…π hydrogen bonds were observed between neighbouring layers and their role is the least significant in the formation of the crystal structure. Packing differences between the polymorphic modifications are minor and can be identified only using an analysis based on a comparison of the pairwise interaction energies.  相似文献   

20.
Coordination polymers are a thriving class of functional solid‐state materials and there have been noticeable efforts and progress toward designing periodic functional structures with desired geometrical attributes and chemical properties for targeted applications. Self‐assembly of metal ions and organic ligands is one of the most efficient and widely utilized methods for the construction of CPs under hydro(solvo)thermal conditions. 2‐(Pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylate (HPIDC2−) has been proven to be an excellent multidentate ligand due to its multiple deprotonation and coordination modes. Crystals of poly[aquabis[μ3‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ5N1,O5:N3,O4:N2]copper(II)dicopper(I)], [CuIICuI2(C10H5N3O4)2(H2O)]n, (I), were obtained from 2‐(pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PIDC) and copper(II) chloride under hydrothermal conditions. The asymmetric unit consists of one independent CuII ion, two CuI ions, two HPIDC2− ligands and one coordinated water molecule. The CuII centre displays a square‐pyramidal geometry (CuN2O3), with two N,O‐chelating HPIDC2− ligands occupying the basal plane in a trans geometry and one O atom from a coordinated water molecule in the axial position. The CuI atoms adopt three‐coordinated Y‐shaped coordinations. In each [CuN2O] unit, deprotonated HPIDC2− acts as an N,O‐chelating ligand, and a symmetry‐equivalent HPIDC2− ligand acts as an N‐atom donor via the pyridine group. The HPIDC2− ligands in the polymer serve as T‐shaped 3‐connectors and adopt a μ3‐κ2N,O2N′,O′:κN′′‐coordination mode, linking one CuII and two CuI cations. The Cu cations are arranged in one‐dimensional –Cu1–Cu2–Cu3– chains along the [001] direction. Further crosslinking of these chains by HPIDC2− ligands along the b axis in a –Cu2–HPIDC2−–Cu3–HPIDC2−–Cu1– sequence results in a two‐dimensional polymer in the (100) plane. The resulting (2,3)‐connected net has a (123)2(12)3 topology. Powder X‐ray diffraction confirmed the phase purity for (I), and susceptibilty measurements indicated a very weak ferromagnetic behaviour. A thermogravimetric analysis shows the loss of the apical aqua ligand before decomposition of the title compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号